68-4
66/136

tive care and radiotherapy. In: Lutz S, Chow E, Hoskin P, eds. Radiation Oncology in Palliative Cancer Care. Chichester: John Wiley & Sons, 2013: 81-94. 2) Watson G, Marshall MG, Dezam WA, Bourland JD, Shaw EG: Central nervous system tumors. In: Levitt SH, Khan FM, Potish RA, Perez CA, eds. Technolog-ical Basis of Radiation Therapy: Clinical Applications. Baltimore: Williams & Wilkins, 1999: 223-241. 3) Chao JH, Phillips R, Nickson JJ: Roentgen-ray therapy of cerebral metastases. Cancer, 1954; 7: 682-689. 4) Budiyono T, Budi WS, Hidayanto E: Treatment plan-ning systems for external whole brain radiation therapy: with and without MLC (multi leaf collimator) optimi-zation. J Phys Conf Ser, 2016; 694: 1-6. 5) Allisy A, Kellerer A, Caswell R, et al: ICRU Report 50. J ICRU, 1993, os26. 6) Sawada M, Kuneda E, Akiba T, et al: Dosimetric study of whole brain irradiation with high-energy photon beams for dose reduction to the scalp. Br J Radiol, 2020; 93: 20200159. 7) Prabhakar RV, Julka PK, Rath GK: Can field-in-field technique replace wedge filter in radiotherapy treat-ment planning: a comparative analysis in various treat-ment sites. Australas Phys Eng Sci Med, 2008; 31: 317-324. 8) Furuya T, Sugimoto S, Kurokawa C, Ozawa S, Kara-sawa K, Sasai K: The dosimetric impact of respiratory breast movement and daily setup error on tangential whole breast irradiation using conventional wedge, field-in-field and irregular surface compensator tech-niques. J Radiat Res, 2013; 54: 157-165. 9) Borghero YO, Salehpour M, McNeese MD, et al: Multi-leaf field-in-field forward-planned intensity-modu-lated dose compensation for whole-breast irradiation is associated with reduced contralateral breast dose: a 386phantom model comparison. Radiother Oncol, 2007; 82: 324-328.10) Chen GP, Ahunbay E, Li XA: Automated computer optimization for 3D treatment planning of breast irra-diation. Med Phys, 2008; 35: 2253-2258.11) Kisling K, Zhang L, Simonds H, et al: Fully automatic treatment planning for external-beam radiation therapy of locally advanced cervical cancer: a tool for low- resource clinics. J Glob Oncol, 2019; 5: 1-9.12) Kim H, Kwak J, Jung J, et al: Automated field-In-field (FIF) plan framework combining scripting application programming interface and user-executed program for breast forward IMRT. Technol Cancer Res Treat, 2018; 17: 1533033818810391.13) Sheng Y, Li T, Yoo S, et al: Automatic planning of whole breast radiation therapy using machine learning models. Front Oncol, 2019; 9: 750.14) Yu J, Goh Y, Song KJ, et al: Feasibility of automated planning for whole brain radiation therapy using deep learning. J Appl Clin Med Phys, 2021; 22: 184-190.15) Fogliata A, Nicolini G, Vanetti E, Clivio A, Cozzi L: Dosimetric validation of the anisotropic analytical algo-rithm for photon dose calculation: fundamental charac-terization in water. Phys Med Biol, 2006; 51: 1421-1438.16) Grégoire V, Mackie T, De Neve W, et al: ICRU Report 83. J ICRU, 2010; 10: 1-106.17) Wang H, Xing L: Application programming in C# envi-ronment with recorded user software interactions and its application in autopilot of VMAT/IMRT treatment planning. Accid Anal Prev, 2016; 17: 189-203.18) Le AH, Stojadinovic S, Timmerman R, et al: Real-time whole brain radiation therapy: a single-institution experience. Int J Radiat Oncol Biol Phys, 2018; 100: 1280-1288.

元のページ  ../index.html#66

このブックを見る