68-3
44/130

(2019-42). 1) Gluckman PD, Hanson MA: Living with the past: evolution, development, and patterns of disease. Science, 2004; 305: 1733-1736. 2) Moritz KM, Wintour EM, Black MJ, Bertram JF, Caruana G: Factors influencing mammalian kidney development: implications for health in adult life. Adv Anat Embryol Cell Biol, 2008; 196: 1-78. 3) Sutherland MR, Gubhaju L, Moore L, et al: Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol, 2011; 22: 1365-1374. 4) Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE: Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol, 2004; 7: 17-25. 5) Cooper R, Atherton K, Power C: Gestational age and risk factors for cardiovascular disease: evidence from the 1958 British birth cohort followed to mid-life. Int J Epidemiol, 2009; 38: 235-244. 6) Bonamy AK, Martin H, Jörneskog G, Norman M: Lower skin capillary density, normal endothelial func-tion and higher blood pressure in children born preterm. J Intern Med, 2007; 262: 635-642. 7) Kwinta P, Klimek M, Drozdz D, et al: Assessment of long-term renal complications in extremely low birth weight children. Pediatr Nephrol, 2011; 26: 1095-1103.240 8) Keijzer-Veen MG, Devos AS, Meradji M, Dekker FW, Nauta J, van der Heijden BJ: Reduced renal length and volume 20 years after very preterm birth. Pediatr Nephrol, 2010; 25: 499-507. 9) Iacobelli S, Loprieno S, Bonsante F, Latorre G, Esposito L, Gouyon JB: Renal function in early childhood in very low birthweight infants. Am J Perinatol, 2007; 24: 587-592.10) Rodríguez-Soriano J, Aguirre M, Oliveros R, Vallo A: Long-term renal follow-up of extremely low birth weight infants. Pediatr Nephrol, 2005; 20: 579-584.11) Nuyt AM, Alexander BT: Developmental program-ming and hypertension. Curr Opin Nephrol Hypertens, 2009; 18: 144-152.12) Yzydorczyk C, Comte B, Cambonie G, et al: Neonatal oxygen exposure in rats leads to cardiovascular and renal alterations in adulthood. Hypertension, 2008; 52: 889-895.13) Nuyt AM: Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experi-mental animal models. Clin Sci (Lond), 2008; 114: 1-17.14) Davis JM, Auten RL: Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med, 2010; 15: 191-195.15) Vento M, Asensi M, Sastre J, Lloret A, García-Sala F, Viña J: Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. J Pediatr, 2003; 142: 240-246.16) Vento M, Asensi M, Sastre J, García-Sala F, Pallardó FV, Viña J: Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyx-iated term neonates. Pediatrics, 2001; 107: 642-647.17) Lee YS, Chou YH: Antioxidant profiles in full term and preterm neonates. Chang Gung Med J, 2005; 28: 846- 851.18) Georgeson GD, Szony BJ, Streitman K, et al: Antioxi-dant enzyme activities are decreased in preterm infants and in neonates born via caesarean section. Eur J Obstet Gynecol Reprod Biol, 2002; 103: 136-139.19) Kuncio GS, Neilson EG, Haverty T: Mechanisms of tubulointerstitial fibrosis. Kidney Int, 1991; 39: 550-556.20) Djamali A: Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am J Physiol Renal Physiol, 2007; 293: F445-F455.21) Saugstad OD: Update on oxygen radical disease in neonatology. Curr Opin Obstet Gynecol, 2001; 13: 147-153.22) Nakagawa M, Nishizaki N, Endo A, et al: Impaired nephrogenesis in neonatal rats with oxygen-induced retinopathy. Pediatr Int, 2017; 59: 704-710.23) Ohsawa I, Ishikawa M, Takahashi K, et al: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 2007; 13: 688-694.24) Wang F, Yu G, Liu SY, et al: Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats. J Surg Res, 2011; 167: e339-34425) Kasai H, Crain PF, Kuchino Y, Nishiura S, Ootsuyama A, Tanooka H: Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis, 1986; 7: 1849-1851.26) Popescu CR, Sutherland MR, Cloutier A, et al: Hyper-oxia exposure impairs nephrogenesis in the neonatal rat: role of HIF-1α. PLoS One, 2013; 8: e82421.27) Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet AcknowledgementsWe would like to thank Yumiko Sakurai, Ph.D. (Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan) and Yuko Kojima (Laboratory of Biomedical Imaging Research, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan) for technical assistance. We also would like to thank Enago (www.enago.jp) for their English language editing service.Juntendo University Project Research Funding Author ContributionsMS, AE, HM, AM, MN analyzed and interpreted the data regarding the newborn rats. AM, YG, TH, KS, YM, NN, SF, YO and TS prepared or revised for important intellectual content. AE was a major contributor in writing the manuscript. All authors read and approved the final manuscript.Conflicts of interest statementThe authors declare that there are no conflicts of interest.ReferencesFunding

元のページ  ../index.html#44

このブックを見る