68-1
11/98

JSPS KAKENHI under Grant Number JP18K15479 (M.N.), JP16H06277 (M.N.).Author ContributionsM.N. wrote and checked the manuscript.Conflict of interest statementsM.N. belongs to the Department of Molecular Pathology of Mood Disorders, Faculty of Medicine, Juntendo University, a joint laboratory of Juntendo University and Sumitomo Dainippon Pharma. 1) G. B. D. Disease Injury Incidence Prevalence Collabo-rators, Global, regional, and national incidence, preva-lence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017; 390(10100): 1211-1259. 2) McGuffin P, Rijsdijk F, Andrew M, et al: The herita-bility of bipolar affective disorder and the genetic rela-tionship to unipolar depression. Arch Gen Psychiatry, 2003; 60: 497-502. 3) McCarroll SA, Feng G, and Hyman SE, Genome-scale neurogenetics: methodology and meaning. Nat Neurosci, 2014; 17: 756-63. 4) Lander ES, Linton LM, Birren B, et al: Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860-921. 5) Bentley DR, Balasubramanian S, Swerdlow HP, et al: Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 2008: 456: 53-9. 6) Manolio TA, Collins FS, Cox NJ, et al: Finding the missing heritability of complex diseases. Nature, 2009; 461: 747-53. 7) Wightman DP, Jansen IE, Savage JE, et al: A genome-wide association study with 1,126,563 individuals iden-tifies new risk loci for Alzheimer’s disease. Nat Genet, 2021; 53: 1276-1282. 8) Corder EH, Saunders AM, Strittmatter WJ, et al: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993; 261: 921-3. 9) Logsdon GA, Vollger MR, and Eichler EE: Long-read human genome sequencing and its applications. Nat Rev Genet, 2020; 21: 597-614.10) Shendure J, Balasubramanian S, Church GM, et al: DNA sequencing at 40: past, present and future. Nature, 2017; 550: 345-353.11) Gandal MJ, Leppa V, Won H, et al: The road to preci-sion psychiatry: translating genetics into disease mechanisms. Nat Neurosci, 2016; 19: 1397-1407.12) Sullivan PF and Geschwind DH: Defining the Genetic, Genomic, Cellular, and Diagnostic Architectures of Psychiatric Disorders. Cell, 2019; 177: 162-183.13) Schizophrenia Psychiatric Genome-Wide Association Study Consortium: Genome-wide association study identifies five new schizophrenia loci. Nat Genet, 2011; 43: 969-76.14) Ripke S, O’Dushlaine C, Chambert K, et al: Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet, 2013; 45: 1150-9.15) Schizophrenia Working Group of the Psychiatric Genomics Consortium: Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014; 511: 421-7.16) Lam M, Chen CY, Li Z, et al: Comparative genetic architectures of schizophrenia in East Asian and Euro-pean populations. Nat Genet, 2019; 51: 1670-1678.17) Sullivan PF, Agrawal A, Bulik CM, et al: Psychiatric Genomics: An Update and an Agenda. Am J Psychi-atry, 2018; 175: 15-27.18) The Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S, Walters JT, et al: Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv, 2020: 2020. 09.12.20192922.19) Sekar A, Bialas AR, de Rivera H, et al: Schizophrenia risk from complex variation of complement component 4. Nature, 2016; 530: 177-83.20) Howes OD and Kapur S: The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull, 2009; 35: 549-62.21) Fromer M, Pocklington AJ, Kavanagh DH, et al: De novo mutations in schizophrenia implicate synaptic networks. Nature, 2014; 506: 179-84.22) Genovese G, Fromer M, Stahl EA, et al: Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci, 2016; 19: 1433-1441.23) Gulsuner S, Walsh T, Watts AC, et al: Spatial and temporal mapping of de novo mutations in schizo-phrenia to a fetal prefrontal cortical network. Cell, 2013; 154: 518-29.24) Howrigan DP, Rose SA, Samocha KE, et al: Exome sequencing in schizophrenia-affected parent-offspring trios reveals risk conferred by protein-coding de novo mutations. Nat Neurosci, 2020; 23: 185-193.25) Rees E, Han J, Morgan J, et al: De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nat Neurosci, 2020; 23: 179-184.26) Singh T, Walters JTR, Johnstone M, et al: The contri-bution of rare variants to risk of schizophrenia in indi-viduals with and without intellectual disability. Nat Genet, 2017; 49: 1167-1173.27) Takata A, Xu B, Ionita-Laza I, et al: Loss-of-function variants in schizophrenia risk and SETD1A as a candi-date susceptibility gene. Neuron, 2014; 82: 773-80.28) Xu B, Ionita-Laza I, Roos JL, et al: De novo gene muta-tions highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet, 2012; 44: 1365-9.29) Singh T, Neale BM, Daly MJ, et al: Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizophrenia. medRxiv, 2020: 2020.09.18.20192815.30) Coyle JT, NMDA receptor and schizophrenia: a brief history. Schizophr Bull, 2012; 38: 920-6.31) Uno Y and Coyle JT: Glutamate hypothesis in schizo-phrenia. Psychiatry Clin Neurosci, 2019; 73: 204-215.32) Grove J, Ripke S, Als TD, et al: Identification of common genetic risk variants for autism spectrum disorder. Nat Genet, 2019; 51: 431-444.33) An JY, Lin K, Zhu L, et al: Genome-wide de novo risk score implicates promoter variation in autism spec-9References

元のページ  ../index.html#11

このブックを見る