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Abstract. Background/Aim: The TP53-signature is a multi-gene
signature that can predict TP53 structural mutations. It has
presented remarkable ability to predict the prognosis of early-
stage breast cancer. However, some samples presented
discordance with the signature status and structure status. We
aimed to investigate whether the mRNA expression levels or copy
number variation (CNV) of MDM?2 and CDKN2A influence the
TP53-signature-score, subtype classification, and prognosis
prediction in TP53 wild-type, luminal type early-stage breast
cancer samples. Materials and Methods: We selected TP53 wild-
type, luminal type early-stage breast cancer samples from The
Cancer Genome Atlas (TCGA) and Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) cohorts.
Then, we analyzed the correlation between the TP53-signature-
score and mRNA expression levels or CNV of MDM?2 and
CDKN2A. Results: The samples with MDM?2 copy number (CN)
amplification or those with CDKN2A CN deep deletion presented
higher TP53-signature-score. Moreover, samples with MDM2 CN
amplification or those with CDKN2A CN deep deletion had more
characteristics of the luminal B type. In addition, they showed
lower estrogen response early score, which correlated with
response to endocrine therapy in breast cancer. However, MDM?2
and CDKN2A mRNA expression did not present the same
tendency. Furthermore, samples with MDM?2 CN amplification
or those with CDKN2A CN deep deletion had a worse prognosis
in METABRIC cohort. Conclusion: The MDM2 or CDKN2A

Correspondence to: Shunsuke Kato, Department of Clinical
Oncology, Juntendo University Graduate School of Medicine, 2-1-
1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Tel: +81 358021543,
Fax: +81 356848035, e-mail: katoshun@juntendo.ac.jp

Key Words: TP53, MDM2, CDKN2A, breast Cancer, copy number
alteration.

= This article is an open access article distributed under the terms and
@@@@ conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0
BY NC ND

international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

CNV may be useful for classifying subtypes and predicting
prognosis more accurately in TP53 wild-type, luminal type early-
stage breast cancer patients.

Breast cancer is the most common occurring cancer among
women worldwide. The subtype classification of breast
cancer plays a pivotal role in its treatment and the prediction
of prognosis.

Breast cancer can be divided into luminal, human epidermal
growth factor receptor 2 (HER2)-like, and Basal-like subtypes
based on the immunohistochemical (IHC) status of estrogen
receptor (ER), progesterone receptor (PgR), HER2, and Ki-67
clinically (1). Luminal type can be further divided into luminal
A and luminal B. Luminal A type is both ER and PgR positive,
HER2-negative, with low expression levels of the protein Ki-
67. On the other hand, luminal B type is ER-positive, either
PgR- and HER2-positive or -negative, with high expression
levels of Ki-67 (1).

Several multi-gene signatures have been developed to
predict prognosis and classify the breast cancer subtypes
more accurately, like OncotypeDX, MammaPrint, and
PAMS50 (2-4). Among them, PAMS50 can divide breast cancer
into Luminal A, Luminal B, Normal-like, HER2-enriched,
and Basal-like, five intrinsic subtypes with fifty genes, more
accurately than IHC classification (5).

Luminal type patients are treated mainly with endocrine
therapy clinically, and have a better prognosis than patients
with other subtypes (6). However, luminal B type has a
worse prognosis and is less sensitive to endocrine therapy
than luminal A type (7, 8).

TP53 is a tumor suppressor gene, which encodes the p53
protein. p53 can regulate the expression of various downstream
genes to maintain genomic stability (9). Mutations in 7P53 can
be found in the majority of solid tumors, and are correlated
with tumorigenesis, tumor progression, and poor prognosis
(10). The TP53-signature was constituted by differentially
expressed genes (DEGs), which can predict the TP53 structural
mutation in the breast cancer cohort (11).
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Yamaguchi et al. demonstrated that the TP53-signature-
score had a remarkable ability to predict the prognosis of
early-stage breast cancer compared to other pre-existing
multi-gene signatures (12). They indicated that TP53 structure
mutated samples presented higher 7P53-signature-score and
defined them as TP53-signature mutant type. Interestingly,
some patients presented with TP53-signature mutant type,
although their TP53 structure was wild type. This discordance
was mainly observed in luminal B type samples, which were
classified using PAMS50, and in some patients who had
MDM?2 mRNA over-expression.

MDM?2 encodes an E3 ubiquitin ligase, MDM2 protein,
which plays a critical role in regulating the normal function
of p53 (13). It has been well studied that MDM?2 and p53
form a negative feedback loop (14).

CDKN2A encodes p14ARF and p16INK4A proteins. Among
them, pl4ARF has been reported to bind to MDM2 and
suppress its E3 ubiquitin ligase function, thereby stabilizing
p53 (15). In addition, CDKN2A copy number (CN) loss and
MDM?2 CN amplification are mutually exclusive (16).

Although MDM2 and p14ARF can modulate the activity
of p53, the relationship between the TP53-signature and
MDM?2 or CDKN2A remains unknown, because not all genes
in the TP53-signature are downstream genes of p53.

In this study, we aimed to analyze whether MDM?2 or
CDKN2A mRNA expression levels or CNV influence the
TP53-signature, and whether MDM2 or CDKN2A mRNA
expression levels or CNV influence the features of luminal
types and prognosis in The Cancer Genome Atlas (TCGA)
and Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) cohorts.

Materials and Methods

Clinical and transcriptomic data collection for breast cancer
patients. TCGA (17) and METABRIC (18, 19) data were obtained
from cBioportal (20, 21). We chose the female breast cancer patients
who presented with 7P53 structure wild type and early-stage
luminal A or luminal B type from TCGA (n=189) and METABRIC
(n=596) cohorts (Table I). In the downloaded clinical data, luminal
A type and luminal B type were classified using the PAMS0
method.

Estimation of the TP53-signature-score and estrogen response early
score. Expression data of the thirty-one genes comprising the 7P53-
signature were obtained from TCGA and METABRIC
(Supplementary Figure S1). The TP53-signature-score was
calculated using a previously described method (12). The estrogen
response early score was calculated using the method described
before that employed R package “GSVA” (22-24).

Definition of CNV. The CNV in TCGA and METABIC cohorts
analyzed were displayed as -2, -1, 0, 1, and 2. Following the
instructions in cBioportal, we defined “-2” as deep deletion, “-1”
as loss, “0” as diploid, “1” as low-levels gain, and “2” as
amplification (25).
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Statistical analysis. The Spearman’s rank correlation test was used
to compare the relationship between the mRNA expression levels
and signature score. The absolute values of r>0.2 were defined as
significantly correlated. Kruskal-Wallis test and Mann—Whitney U-
test were used to compare group means. The p-value of the Kaplan—
Meier survival curves was calculated using the log-rank test.
Fisher’s Exact test was used for statistically analyzing patients’
characteristics except for age. All statistical tests were performed
using R software (version 4.0.1) and EZR software (26). All plots
were constructed by using the EZR software. A p-value less than
0.05 was considered statistically significant. Statistically significant
results are shown in bold in figures and tables.

Results

MDM?2 and CDKN2A mRNA expression levels were not
significantly correlated with the TP53-signature-score or the
features of luminal B type. To determine whether MDM?2 or
CDKN2A mRNA expression levels influence the TP53-
signature-score, we analyzed the correlation between the
TP53-signature-score and the mRNA expression levels of
MDM?2 and CDKN2A. We found that neither MDM?2 nor
CDKN2A mRNA expression levels showed a significant
correlation with the TP53-signature-score (Figure 1A-D).

To study whether MDM?2 and CDKN2A mRNA expression
levels influence the features of luminal B types, we analyzed
the correlation between MDM2 or CDKN2A mRNA
expression levels and those of ESRI, PGR, and MKI67 mRNA
expression levels, which encode ERa, PgR, and Ki-67,
respectively (27). We found that MDM2 mRNA expression
levels were not correlated with those of ESRI or PGR mRNA
expression levels (Figure 2A, B, E and F). However, MDM?2
mRNA expression levels had a weak, positive correlation with
those of MKI67 mRNA expression levels (Figure 2C and G).
We also analyzed the relationship between the MDM2 mRNA
expression levels and estrogen response early score, as it has
been previously reported that a lower score may indicate
resistance to endocrine therapy (20). We found that MDM?2
mRNA expression levels were not significantly correlated with
estrogen response early score (Figure 2D and H).

In TCGA cohort, CDKN2A mRNA expression levels
presented a weak, negative relationship with those of ESRI
mRNA expression levels, but not in METABRIC cohort
(Figure 3A and E). In addition, CDKN2A mRNA expression
levels were not correlated with those of PGR or MKI67
mRNA expression levels (Figure 3B, C, F and G). CDKN2A
mRNA expression levels were not correlated with estrogen
response early score in neither TCGA nor METABRIC
cohorts either (Figure 3D and H).

MDM?2 and CDKN2A CNV were correlated with the TP53-
signature-score and the features of luminal B type. We
analyzed whether MDM?2 and CDKN2A CNV influence the
TP53-signature-score. In our results, samples with MDM?2
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Table 1. Clinical characteristics of the samples analyzed.

Characteristic TCGA METABRIC
No. of samples % No. of samples %

Samples 189 100% 596 100%
Diagnosed age (median) 29-89 (61) 28.04-90.43 (63.02)
PAMS50.subtype

Luminal A 136 72.0% 397 66.6%

Luminal B 53 28.0% 199 33.4%
ER status

Positive 184 97.4% 576 96.6%

Negative 3 1.6% 11 1.8%

Others 2 1.1% 9 1.5%
PgR status

Positive 165 87.3% 454 76.2%

Negative 21 11.1% 142 23.8%

Others 3 1.6% 0 0.0%
HER?2 status

Positive 11 5.8% 24 4.0%

Negative 172 91.0% 572 96.0%

Others 6 32% 0 0.0%
Tumor stage

TO 0 0.0% 1 0.2%

T1 72 38.1% 263 44.1%

T2 117 61.9% 332 55.7%
Lymph node

Negative (NO or 0) 122 64.6% 397 66.6%

Positive (N1 or 1~3) 67 354% 199 33.4%
MDM?2 CNV

Deletion (-1) and Diploid (0) 156 82.5% 530 88.9%

Low level gain (1) 24 12.7% 49 8.2%

High level amplification (2) 9 4.8% 17 2.9%
CDKN2A CNV

Deep deletion (-2) 3 1.6% 7 1.2%

Loss (-1) 34 18.0% 84 14.1%

Diploid (0) and amplification (1,2) 152 80.4% 505 84.7%

TCGA: The Cancer Genome Atlas; METABRIC: Molecular Taxonomy of Breast Cancer International Consortium; ER: estrogen receptor; PgR:
progesterone receptor; HER2: human epidermal growth factor receptor 2; CNV: copy number variation.

CN amplification or those with CDKN2A CN deep deletion
presented higher TP53-signature-score than other CNV
samples (Figure 4A-D).

There were no significant differences regarding ESRI
mRNA expression levels (Figure 5A and E). However, the
samples with MDM?2 CN amplification presented lower PGR
mRNA expression levels (Figure 5B and F) and higher
MKI67 mRNA expression levels (Figure 5C and G).
Estrogen response early score was lower in the samples with
MDM?2 CN amplification in both TCGA and METABRIC
cohorts, and was statistically significant in the METABRIC
cohort (Figure 5D and H).

The samples with CDKN2A CN deep deletion presented
higher ESRI mRNA expression levels in TCGA cohort, but
not in METABRIC cohort (Figure 6A and E). They also
presented lower PGR mRNA expression levels, but not

higher MKI67 mRNA expression levels (Figure 6B, C, F and
G). The samples with CDKN2A CN deep deletion also
presented lower estrogen response early score, but there were
no statistically significant differences (Figure 6D and H).
These results indicated that samples with MDM2 CN
amplification or those with CDKN2A CN deep deletion
defines better the luminal B type than their mRNA
expression levels. These samples may present resistance to
endocrine therapy.

Samples with MDM?2 CN amplification or those with
CDKN2A CN deep deletion had worse prognosis. We
compared the overall survival in TCGA and METABRIC
cohorts with MDM?2 and CDKN2A CNV.

In the METABRIC cohort, the Kaplan—-Meier survival
curves revealed that samples with MDM2 CN amplification
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Figure 1. Correlation between TP53-sigature-score and the mRNA expression levels of MDM?2 and CDKN2A. Correlation plots of the TP53-
signature-score with the mRNA expression levels of MDM2 and CDKND2A in TCGA (A, B) and METABRIC (C, D) cohorts. p-Values were calculated

using the Spearman’s rank correlation coefficient.

or those with CDKN2A CN deep deletion presented worse
prognosis (Figure 7A and B). The results of the samples with
MDM?2 CN amplification were consistent with those in
previous reports (28, 29).

However, there were no statistically significant differences
in the median cut-off values of MDM2 and CDKN2A mRNA
expression levels (Supplementary Figure S2A-D). About
10% of the samples had MDM2 CN gain and amplification
in the METABRIC cohort, and 15% in the TCGA cohort
(Supplementary Table S1 and Table S2). Therefore, we
defined the samples with the top 10% and 15% of high
MDM?2 mRNA expression as the high group and the others
as the low group, and then compared their overall survival.
However, no significant differences were found
(Supplementary Figure S3A-D). Regarding the inconsistent
results of MDM?2 mRNA expression levels and CNV, we
found that some samples presented higher mRNA expression
levels with CN not amplified, however, MDM2 mRNA
expression levels were comparable with the CNV in most of
the samples (Supplementary Figure S4A, B).

About 15% of the samples had CDKN2A CN loss and
deep deletion in the METABRIC cohort, and 20% in TCGA
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cohort (Supplementary Table S1 and Table S2). Therefore,
we defined the samples with the bottom 15% and 20% of
low CDKN2A mRNA expression as the low group and the
others as the high group, and then compared overall survival
between these two groups. There were no statistically
significant differences in TCGA cohort (Supplementary
Figure S5A, C). However, the low group presented poor
prognosis in METABRIC cohort (Supplementary Figure
S5B, D).

Discussion

In this study, we demonstrated that the CNV of MDM?2 or
CDKN2A, but not their mRNA expression levels were
correlated with the TP53-signature-score.

We also demonstrated that the samples with MDM2 CN
amplification or those with CDKN2A CN deep deletion
presented more characteristic of luminal B type than their
mRNA expression levels. Especially, the samples with
MDM?2 CN amplification presented statistical significantly
lower estrogen response early score in METABRIC cohort.
A previous report demonstrated that MDM2 can degrade
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Figure 2. Correlation between MDM?2 mRNA expression levels and the mRNA expression levels of ESRI, PGR, MKI67, and estrogen response early
score. (A-C, E-G) Plots showing correlations between MDM2 mRNA expression levels and those of typical genes for luminal type (ESRI1, PGR,

MKI67) in both TCGA and METABRIC cohorts. (D, H) Plots showing correlations between MDM2 mRNA expression levels and the estrogen
response early score. p-Values were calculated using Spearman’s rank correlation coefficient.
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Figure 3. Correlation between CDKN2A mRNA expression levels and the mRNA expression levels of ESR1, PGR, MKI67, and estrogen response
early score. (A-C, E-G) Plots showing correlations between CDKN2A mRNA expression levels and those of typical genes for luminal type (ESRI,

PGR, MKI67) in both TCGA and METABRIC cohorts. (D, H) Plots showing the correlations between CDKN2A mRNA expression levels and the
estrogen response early score in both TCGA and METABRIC cohorts. p-Values were calculated using Spearman’s rank correlation coefficient.
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Figure 4. The TP53-signature-score is associated with the CNV of MDM?2 and CDKN2A. (A, C) Boxplots of the comparison of the TP53-signature-
score with the MDM?2 CNV [(2) amplified, (1) gain, (-1, 0) not amplified] in both TCGA and METABRIC cohorts. (B, D) Boxplots of the comparison
of the TP53-signature-score with the CDKN2A CNV [(-2) deep deletion, (-1) loss, (0, 1, 2) not deleted] in both TCGA and METABRIC cohorts. p-
values were calculated using Kruskal-Wallis test and Mann—Whitney U-test. CNV: Copy number variation.

ERa (30). According to this relationship between MDM?2
and ERa, we assumed that the amplified functional MDM?2
destroys the ERa and results in a decrease in the dependency
of the ER signal.

In regards to the inconsistent results of MDM2 mRNA
expression levels and CNV, the splice variants of MDM?2
were considered. It has been reported that MDM?2 has several
types of splice variants, and some of them have distinct
functions from full-length MDM?2 (31-33). However, many
MDM? splice variants functions are still not yet completely
understood. Therefore, further research is required.

In contrast to MDM?2, the CDKN2A mRNA expression
levels presented the same tendency with their CNV to some
extent. However, these results indicate that it is exceedingly
difficult to set a common cut-off value for mRNA expression
levels in clinical settings with different cohorts.

As this was a retrospective study, there are also some
limitations. The major limitation was that we analyzed only
two big cohorts. Moreover, the proportion of the samples
that presented MDM?2 CN amplification or CDKN2A CN

deep deletion was less than 5%, therefore, the available data
were limited.

Despite the small number of samples with MDM2 CN
amplification or CDKN2A CN deep deletion, they are still
worth measuring. Especially samples with MDM2 CN
amplification have been reported to be correlated with a worse
outcome after immune checkpoint inhibitor treatment in a pan-
cancer analysis (34). We believe that they should be one of the
indicators for considering a treatment plan more accurately.

In conclusion, our results demonstrated that the MDM?2 or
CDKN2A CNV may be more useful than their mRNA
expression levels for classifying the subtypes and predicting
the prognosis more accurately in 7P53 wild-type, luminal
type early-stage breast cancer patients.

Supplementary Material

Supplementary material can be obtained at: https://www.dropbox.
com/sh/ndv7g89vuxnwOhs/AABkq7LPZUU-bOxJ2GQ7DvDoa?
dl=0
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Figure 5. The association between the MDM?2 CNV and the mRNA expression levels of ESRI, PGR, MKI67, and estrogen response early score. (A-
C, E-G) Boxplots of the comparison of typical genes for luminal type (ESRI, PGR, MKI67) with the MDM?2 CNV [(2) amplified, (1) gain, (-1, 0)
not amplified] in both TCGA and METABRIC cohorts. (D, H) Boxplots of the comparison of the estrogen response early score with the MDM2 CNV
[(2) amplified, (1) gain, (-1, 0) not amplified] in both TCGA and METABRIC cohorts. p-Values were calculated using Kruskal-Wallis test and
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Figure 6. Association between the CDKN2A CNV and the mRNA expression levels of ESR1, PGR, MKI67, and estrogen response early score. (A-C,
E-G) Boxplots of the comparison of typical genes for luminal type (ESRI, PGR, MKI67) with the CDKN2A CNV [(-2) deep deletion, (-1) loss, (0,
1, 2) not deleted] in both TCGA and METABRIC cohorts. (D, H) Boxplots of the comparison of the estrogen response early score with CDKN2A
CNV [(-2) deep deletion, (—1) loss, (0, 1, 2) not deleted] in both TCGA and METABRIC cohorts. p-Values were calculated by Kruskal-Wallis test
and Mann—Whitney U-test. CNV: Copy number variation.
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survival between CDKN2A CN (-2) deep deleted (black), (-1) loss (red), and (0, 1, 2) not deleted (green). p-Values were calculated using the log-
rank test. CNV: Copy number variation; CN: copy number.
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