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Abstract: Fecal microbiota transplantation following triple-antibiotic therapy (amoxicillin/fosfomycin/
metronidazole) improves dysbiosis caused by reduced Bacteroidetes diversity in patients with ulcer-
ative colitis (UC). We investigated the correlation between Bacteroidetes species abundance and UC
activity. Fecal samples from 34 healthy controls and 52 patients with active UC (Lichtiger’s clinical
activity index ≥5 or Mayo endoscopic subscore ≥1) were subjected to next-generation sequencing
with HSP60 as a target in bacterial metagenome analysis. A multiplex gene expression assay using
colonoscopy-harvested mucosal tissues determined the involvement of Bacteroidetes species in the
mucosal immune response. In patients with UC, six Bacteroides species exhibited significantly lower
relative abundance, and twelve Bacteroidetes species were found significantly correlated with at
least one metric of disease activity. The abundance of five Bacteroidetes species (Alistipes putredinis,
Bacteroides stercoris, Bacteroides uniformis, Bacteroides rodentium, and Parabacteroides merdae) was corre-
lated with three metrics, and their cumulative relative abundance was strongly correlated with the
sum of Mayo endoscopic subscore (R = −0.71, p = 2 × 10−9). Five genes (TARP, C10ORF54, ITGAE,
TNFSF9, and LCN2) associated with UC pathogenesis were expressed by the 12 key species. The loss
of key species may exacerbate UC activity, serving as potential biomarkers.

Keywords: ulcerative colitis; microbiota; Bacteroidetes species; biomarker; Alistipes putredinis;
Bacteroides stercoris; Bacteroides uniformis; Bacteroides rodentium; Parabacteroides merdae;
Bacteroides thetaiotaomicron

1. Introduction

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s
disease, represents a group of chronic inflammatory intestinal disorders resulting from
complex interactions among genetic, immunological, and environmental factors whose
etiology and pathogenesis are not fully understood [1,2]. In patients with UC, the diversity
and richness of their intestinal microbiota are reduced, resulting in dysbiosis [3–5] and a
significantly lower abundance of intestinal bacteria compared with that of healthy individ-
uals [6,7]. Since changes in the microbiota can reflect disease activity, the abundance and
diversity of intestinal microbiota may serve as a promising candidate biomarker for UC.

Fecal microbiota transplantation (FMT) is a therapeutic approach that is used to restore
normal intestinal microbiota function by transplanting fecal bacterial microbiota derived
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from a healthy donor. FMT has been proposed as a form of microbial therapy for UC [8–11].
We previously reported that dysbiosis in the intestinal microbiota resulting from UC pri-
marily results from a reduction in the number of Bacteroidetes operational taxonomic units
and species diversity, resulting in the hyperproliferation and hypoproliferation of particular
species. Moreover, we found that a single session of FMT following triple-antibiotic therapy
(amoxicillin, fosfomycin, and metronidazole) reduced the symptoms of intestinal dysbiosis
in patients with UC. This was achieved by the successful transplantation of live Bac-
teroidetes cells from donors, with both short-term efficacy and long-term maintenance of
treatment [12–14]. Other reports have also suggested that improvement in the diversity and
composition of Bacteroidetes species is beneficial for UC [15–17]. Bacteroides thetaiotaomicron
can suppress inflammation in preclinical models of IBD [18]. Intestinal Bacteroides species
have developed a commensal colonization system, which contributes to the homeostasis
of gut microbiota [19], and reportedly synthesizes conjugated linoleic acid, which has
immunomodulatory properties [20–22].

In this study, we aimed to determine the potential of Bacteroidetes species as a
biomarker of UC. We compared composition of intestinal Bacteroidetes species between
healthy controls and patients with UC, evaluated the correlation between Bacteroidetes
species components and metrics of UC activity, and performed a multiplex gene expression
assay to analyze the correlation between the intestinal mucosa of patients with UC and gene
expression in Bacteroidetes species. We identified 12 key Bacteroidetes species that were
significantly correlated with UC activity, as well as the expression of five genes involved in
UC pathogenesis in colonic biopsy specimens. These findings can help identify specific
microbial taxa and/or genes that can be used as reliable non-invasive fecal biomarkers,
aiding the clinical management of UC.

2. Materials and Methods
2.1. Patients and Healthy Controls

Fifty-two patients with UC and 34 healthy controls were enrolled in this study from
June 2014 to November 2017 at Juntendo University Hospital. UC was diagnosed based
on standard clinical, endoscopic, and histological criteria. Eligible patients were over 16
years of age and had not received antibiotics or topical steroids, which can influence the
microbiome composition, within 3 months before fecal sample collection [23,24]. Further-
more, all patients were confirmed to have active UC, as revealed by Lichtiger’s clinical
activity index (CAI) ≥ 5 or Mayo endoscopic subscore (MES) ≥ 1. Patients with intestinal
superinfections due to cytomegalovirus (determined by blood tests) were excluded from
the study. Further exclusion criteria included pregnancy, current serious diseases, and
participation in other clinical studies. The healthy controls were donor candidates from
the clinical study of FMT. Health of donor candidates was ensured by the Juntendo donor
screening criteria [12–14]. Donor candidates, who had been exposed to antibiotics within 3
months before the commencement of the study were excluded.

2.2. Fecal and Mucosal Sample Collection

Fecal and mucosal samples were collected on the same day. All fecal samples were
transported to our laboratory within 6 h of collection, diluted 10-fold in TE buffer [10 mM
Tris and 1 mM EDTA (pH 8.0)], and frozen at −80 ◦C until processing. Mucosal samples
were taken from sections exhibiting the most severe inflammation by colonoscopy biopsy
to be used for histopathology and gene expression assays.

2.3. Next-Generation Sequencing and Library Preparation

To identify key Bacteroidetes families, genera, and species associated with UC, we
performed microbiome-wide analysis of partial sequences of heat shock protein 60 (HSP60),
which was reported as a useful target sequence for bacterial metagenome analysis [25,26].
We have already reported the method for bacterial analysis involving DNA extraction,
amplification by polymerase chain reaction (PCR), preparation of DNA libraries for next-
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generation sequencing, quality filtering of sequencing reads, and taxonomic analysis based
on Bacteroidetes HSP60 sequences [14]. In this study, we used a microbiome method
targeting HSP60, utilizing the partial sequences widely employed in phylogenic analysis
and species identification using Sanger sequencing, because of its higher diversity than
that of 16S rRNA [27].

2.4. Multiplex Gene Expression Assay

Colonic mucosal tissues were obtained from inflammatory lesions of the colon from
patients with UC through colonoscopy. Mucosal samples were pooled to generate 15 µL
of each diluted sample (10 ng per primer pool). The multiplex gene expression assay
(398 genes implicated in UC etiopathogenesis) was performed using the Oncomine Immune
Response Research Assay (Thermo Fisher Scientific, Waltham, MA, USA) at the Nihon
Gene Research Laboratories.

2.5. Statistical Analysis

All data were entered in Microsoft Excel and exported to GraphPad Software version
8.4.2. The mean and standard deviation values were computed for age, duration of disease,
and clinical findings, whereas proportions were determined for sex and disease location.
The composition of order Bacteroidetes were compared between healthy controls and
UC patients. The statistical significance of differences upon pairwise comparisons was
determined using the Mann–Whitney U test. We evaluated correlations between the
relative abundance of Bacteroidetes species in fecal samples and UC activity through the
following metrics: Sum of MES (in each part of the intestine: Periphery of the appendix
vermiformis, cecum, ascending colon, transverse colon, descending colon, sigmoid colon,
and rectum) [28], the Ulcerative Colitis Endoscopic Index of Severity (UCEIS), CAI, and
Robarts histopathology index (RHI) [29]. However, we did not employ statistical correction
for performing multiple comparisons that were not pre-specified as this increases the
possibility of a false positive. Furthermore, we evaluated the correlation between the
relative abundance of Bacteroidetes species and gene expression levels using Pearson’s
correlation coefficient. Statistical significance was considered at p ≤ 0.05.

3. Results
3.1. Patient Characteristics

The clinical characteristics of patients with UC are summarized in Table 1. On diag-
nosis, most patients presented with moderate to severe symptoms. From the HSP60 PCR
product DNA libraries, we obtained an average of 259,614, and 195,893 valid Bacteroidetes
reads per sample from healthy controls, and UC patients. In addition, we obtained an
average of 245,094, and 154,313 valid reads from the order Bacteroidales per sample,
respectively. Bacteroidales is the predominant order in the phylum Bacteroidetes, and
we previously reported that its species diversity is strongly correlated with the efficacy
of FMT following triple-antibiotic therapy [14]. Therefore, we focused on the taxonomic
composition belonging to the order Bacteroidales in the intestinal microbiota (Tables S1–S3).
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Table 1. Characteristics of patients with ulcerative colitis during sample collection.

Characteristic Total (n = 52)

Age (years), mean ± SD 40.3 ± 13.4
Male/female, n (%) 35/17 (67.3)

Duration of disease (years), mean ± SD 9.0 ± 9.4
Disease location
Proctitis, n (%) 10 (19.2)

Left sided colitis, n (%) 20 (38.5)
Extensive colitis, n (%) 22 (42.3)

Sum of MES, mean ± SD 5.0 ± 3.4
UCEIS, mean ± SD 5.3 ± 2.8

CAI, mean ± SD 10.2 ± 3.3
RHI, mean ± SD 12.2 ± 8.2

MES, Mayo endoscopic subscore; UCEIS, ulcerative colitis endoscopic index of severity; CAI, Lichtiger’s clinical
activity index; RHI, Robarts histopathology index; SD, standard deviation.

3.2. Differences in the Composition of the Order Bacteroidales between the Healthy Controls and
UC Patients

Of the families, genera, and species belonging to the order Bacteroidales, the rela-
tive abundance of the following bacteria differed significantly between the two groups
(Table 2). In terms of species, the relative abundance of 6 species (Alistipes putredinis,
Bacteroides coprocola, Bacteroides uniformis, Bacteroides cellulosilyticus, Bacteroides intestinalis,
and Parabacteroides goldsteinii) in healthy controls is significantly higher than that in UC
patients.

Table 2. Differences in the composition of order Bacteroidales between the healthy controls and
UC patients.

Taxonomic Description
(Taxonomic Level)

Relative Abundance (%)
(Standard Deviation)

Significance Level
t Test

Healthy UC
Bacteroidaceae

(Family)
63.06

(28.311)
42.35

(32.969) 0.003

Marinilabiliaceae
(Family)

0.05
(0.076)

4.56
(13.892) 0.024

Bacteroides
(Genus)

62.56
(28.782)

39.90
(33.888) 0.002

Alistipes putredinis
(Species)

2.10
(3.162)

0.05
(0.139) <0.001

Bacteroides coprocola
(Species)

5.73
(12.042)

1.24
(4.430) 0.047

Bacteroides uniformis
(Species)

12.47
(11.960)

6.29
(9.143) 0.014

Bacteroides cellulosilyticus
(Species)

0.26
(0.648)

0.002
(0.006) 0.026

Bacteroides intestinalis
(Species)

0.09
(0.224)

0.0004
(0.002) 0.030

Parabacteroides goldsteinii
(Species)

0.01
(0.028)

0.002
(0.009) 0.023

3.3. Correlation between the Composition of Order Bacteroidales and the Metrics of UC Activity

The following 12 species (i.e., key species) were significantly associated with ≥1 met-
ric of UC activity: Alistipes putredinis, Alistipes shahii, Bacteroides dorei, Bacteroides
massiliensis, Bacteroides thetaiotaomicron, Bacteroides caccae, Bacteroides ovatus, Bac-
teroides stercoris, Bacteroides uniformis, Bacteroides rodentium, Parabacteroides merdae,
and Parabacteroides distasonis (Table 3).
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Table 3. Correlation between relative abundance of Bacteroidetes species in gut microbiota and metrics of ulcerative
colitis activity.

Taxonomic Description
(Taxonomic Level)

Relative Abundance
(%) ± SD

Sum of MES
(r, p) UCEIS (r, p) CAI (r, p) RHI (r, p)

Prevotellaceae
(Family) 13.40 ± 26.589 0.276, 0.048

Bacteroidaceae
(Family) 42.35 ± 32.969 −0.388, 0.004 −0.397, 0.004

Marinfilaceae
(Family) 0.69 ± 2.186 0.278, 0.046

Porphyromonadaceae
(Family) 28.63 ± 24.786 0.299, 0.031

Dysgonomonas
(Genus) 0.25 ± 1.202 0.287, 0.039

Bacteroides
(Genus) 39.90 ± 33.888 −0.433, 0.001 −0.459, <0.001

Macellibacteroides
(Genus) 0.24 ± 1.080 0.372, 0.007

Alistipes putredinis
(Species) 0.05 ± 0.139 −0.287, 0.039 −0.431, 0.001 −0.325, 0.021

Bacteroides stercoris
(Species) 3.51 ± 9.550 −0.468, <0.001 −0.540, <0.001 −0.357, 0.011

Bacteroides uniformis
(Species) 6.29 ± 9.143 −0.602, <0.001 −0.458, <0.001 −0.370, 0.007

Bacteroides rodentium
(Species) 0.31 ± 0.848 −0.394, 0.004 −0.313, 0.024 −0.440, 0.001

Parabacteroides merdae
(Species) 2.42 ± 5.691 −0.364, 0.008 −0.451, <0.001 −0.341, 0.015

Parabacteroides distasonis
(Species) 16.68 ± 24.498 −0.307, 0.026 −0.347, 0.012

Alistipes shahii
(Species) 0.05 ± 0.139 −0.303, 0.029 −0.386, 0.006

Bacteroides thetaiotaomicron
(Species) 1.41 ± 4.239 −0.344, 0.012 −0.383, 0.005

Bacteroides ovatus
(Species) 1.68 ± 5.004 −0.398, 0.003 −0.394, 0.004

Bacteroides caccae
(Species) 0.94 ± 3.551 −0.294, 0.034

Bacteroides massiliensis
(Species) 0.46 ± 2.292 −0.383, 0.005

Bacteroides dorei
(Species) 4.92 ± 11.895 −0.393, 0.003

MES, Mayo endoscopic subscore; UCEIS, ulcerative colitis endoscopic index of severity; CAI, Lichtiger’s clinical activity index; RHI,
Robarts histopathology index; SD, standard deviation.

The abundance of Bacteroides uniformis (R = −0.60, p = 2 × 10−6) and that of seven
other species was significantly correlated with the sum of MES. For Bacteroides stercoris
(R = −0.54, p = 3 × 10−5) and six other species, their abundance was significantly correlated
with UCEIS. Meanwhile, the abundance of Bacteroides rodentium (R = −0.44, p = 0.001) and
six other species was significantly correlated with CAI while the abundance of Alistipes
shahii and that of three other species was significantly correlated with RHI.

3.4. Cumulative Relative Abundance of Five Bacteroidetes Species Is Strongly Correlated with the
Sum of MES

Among the 12 key Bacteroidetes species, the relative abundance of five species
(Alistipes putredinis, Bacteroides stercoris, Bacteroides uniformis, Bacteroides rodentium, and
Parabacteroides merdae) was correlated with three of four metrics of UC activity. The cu-
mulative relative abundance of these five species was correlated with UCEIS (R = −0.58,
p = 5 × 10−6) (Figure 1A), CAI (R = −0.28, p = 0.04) (Figure 1B), RHI (R = −0.36, p = 0.01)
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(Figure 1C), and strongly correlated with the sum of MES (R = −0.71, p = 2 × 10−9)
(Figure 1D).

1 
 

  

  
 

Figure 1. Correlation between the cumulative relative abundance of five key Bacteroidetes species and clinical evaluation.
The cumulative relative abundance of five key Bacteroidetes species was correlated with UCEIS (R = −0.58, p = 5 × 10−6)
(A), CAI (R = −0.28, p = 0.04) (B), RHI (R = −0.36, p = 0.01) (C), and the sum of MES (R = −0.71, p = 2 × 10−9) (D).

3.5. Correlations between Relative Abundance of the 12 Key Bacteroidetes species and Expression
Levels of UC-Related Genes in the Colonic Mucosa

We evaluated the correlation between the expression of 398 genes involved in UC
pathogenesis in colonic biopsy specimens and the relative abundance of 12 key Bac-
teroidetes species from our cohort. In total, the expression levels of 60 genes were corre-
lated with the abundance of ≥2 Bacteroidetes species. A heatmap of these 60 genes was
constructed, and the relative abundance of the 12 key Bacteroidetes species in the fecal
microbiota was determined (Figure 2, Table S4).
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five Bacteroidetes species, while that of integrin αE gene (ITGAE or CD103) was also significantly 
positively correlated with four Bacteroidetes species. Meanwhile, TNFSF9 (also known as CD137 
or 4-1BB) and lipocalin 2 (LCN2) expression was significantly negatively correlated with four Bac-
teroidetes species. 
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To our knowledge, this study is the first to investigate the correlation between intes-
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Figure 2. Heatmap of the correlation between 12 key Bacteroidetes species components and expres-
sion levels of ulcerative colitis-related genes in the colonic mucosa. The gray scale of the heatmap
indicates no significant correlation at p > 0.05, while the red and blue scales indicate positive and neg-
ative correlations, respectively. The greater the correlation, the darker the color. TARP and C10ORF54
(also known as VISTA) expression showed a significant positive correlation with five Bacteroidetes
species, while that of integrin αE gene (ITGAE or CD103) was also significantly positively correlated
with four Bacteroidetes species. Meanwhile, TNFSF9 (also known as CD137 or 4-1BB) and lipocalin 2
(LCN2) expression was significantly negatively correlated with four Bacteroidetes species.

4. Discussion

To our knowledge, this study is the first to investigate the correlation between in-
testinal microbiota dysbiosis and several metrics of UC activity. In patients with UC,
6 Bacteroides species exhibited significantly lower relative abundance when compared
to that in the healthy controls, and 12 key Bacteroidetes species identified in this study
displayed negative correlations with metrics of UC activity. Therefore, the loss of these
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species is suggested to result from UC exacerbation, as Bacteroidetes species adhering
to the mucosal surface may be unable to inhabit the niche of the extensively damaged
mucosa without sufficient mucin production in highly severe UC [30]. Moreover, the study
showed that the cumulative relative abundance of five species was correlated with three of
four metrics of UC activity, but the correlation was strongest with the sum of MES. This
result suggests that fecal microbiota may be interpreted differently depending on the extent
of disease.

Regarding interactions between key Bacteroidetes species and the intestinal immune
response, ITGAE is involved in not only intestinal damage but also systemic tissue dam-
age associated with inflammatory diseases, including autoimmune diseases [31–33], and
C10ORF54 is a potent negative regulator of T cell function, being expressed on hematopoi-
etic cells and leukocytes [34]. The expression levels of these genes associated with regula-
tory functions against excessive inflammation showed an increasing tendency alongside
the increase in the proportions of key Bacteroidetes species. TNFSF9 is a co-stimulatory
molecule expressed on T cells and natural killer cells upon activation [35–37], LCN2 ex-
pression is reportedly upregulated in IBD patients [38,39], and the regulatory dynamics
of fecal LCN2 have been harnessed as a sensitive biomarker of gut inflammation, both
in animal models and in patients with IBD [40–42]. However, the proportions of key
Bacteroidetes species showed a tendency to associate with downregulated genes that are
related to the exacerbation of intestinal inflammation. The genus Bacteroides, belonging to
the phylum Bacteroidetes, produces short chain fatty acids, which increase the number of
colonic Treg cells by encouraging the migration of extraintestinal Treg cells [43,44]. Specific
Bacteroidetes species control inflammation with zwitterionic capsular polysaccharides,
which are bacterial products that modulate T cells, such as by inducing anti-inflammatory
interleukin-10-secreting Treg cells [45,46]. We found Bacteroides thetaiotaomicron, one of
the key Bacteroidetes species that correlated with the sum of MES and CAI. The finding
supports the fact that Bacteroides thetaiotaomicron suppresses inflammation of IBD [18].
Taken together, the findings of this study suggest that abundant key Bacteroidetes species
have therapeutic potential; further studies on the gnotobiotic species of Bacteroidetes are
required to elucidate the regulatory functions of these 12 key species.

This study has some limitations, such as the limited number of patients and analysis
of the microbial composition of only the order Bacteroidales. Analyzing other taxa would
enable elucidation of the interactions among the Bacteroides species and the gene expres-
sion under the mutual influence of other intestinal bacterial groups. In addition, analyzing
the mucosa-associated microbiome and the gene expression of mucosal membrane tissue
from patients in remission could offer a better understanding of the Bacteroides species
potentially associated with recurrence.

5. Conclusions

We identified 12 Bacteroidetes species whose relative abundance was negatively
correlated with UC activity and can potentially serve as useful microbial biomarkers to
evaluate the disease activity of UC and its exacerbation. The identification of microbiome
components associated with disease activity may lay the foundation for the establishment
of a set of microbiota biomarkers, offering a non-invasive and accurate method to monitor
UC and establish appropriate personalized treatments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10081749/s1, Tables S1–S3: The taxonomic composition of species, genera, and families
belonging to the order Bacteroidales in the intestinal microbiota, Table S4: Heatmap of the correlation
between 12 key Bacteroidetes species components and expression levels of ulcerative colitis-related
genes in the colonic mucosa.
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