1	Effect of <i>Lepidium meyenii</i> on <i>in vitro</i> fertilization via improvement in acrosome reaction and motility of
2	mouse and human sperm
3	
4	Yusuke Aoki ^{1,2} , Akira Tsujimura ¹ , Yuki Nagashima ¹ , Ippei Hiramatsu ^{1,2} , Yuka Uesaka ¹ , Taiji Nozaki ¹ , Tatsuya
5	Ogishima ¹ , Masato Shirai ¹ , Yukihiro Shoyama ³ , Hiromitsu Tanaka ³ , Shigeo Horie ² *
6	
7	¹ Department of Urology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021,
8	Japan
9	² Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo
10	113-8421, Japan
11	³ Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo,
12	Nagasaki 859-3298, Japan
13	
14	
15	
16	*Correspondence: Shigeo Horie, Department of Urology, Juntendo University Graduate School of Medicine,
17	2-1-1 Hongo Bunkyo-ku Tokyo, 113-8431 Japan. Tel: +81-3-5802-1227; Fax: +81-3-5802-1227; E-mail:
18	shorie@juntendo.ac.jp
19	

20 ABSTRACT

21	Purpose: The direct effects of Lepidium meyenii (Maca) on sperm remain unclear. Herein, we examined the
22	direct effect of Maca on in vitro fertilization.
23	Methods: We examined the fertilization rate in a mouse model and the rate of acrosome reaction in sperm from
24	transgenic mice expressing enhanced green fluorescent protein (EGFP) in a Maca extract-containing human
25	tubal fluid (HTF) medium. Using human sperm, we assessed acrosome status via fluorescein isothiocyanate-
26	conjugated peanut agglutinin (FITC-PNA) staining and performed detailed analysis using a sperm motility
27	analysis system (SMAS).
28	Results: In the mouse model, the fertilization rate in the Maca extract-containing HTF was significantly higher
29	than that in the control medium. The acrosome reaction rate in sperm from transgenic mice expressing EGFP
30	was also significantly higher in the Maca extract-containing HTF than that in the control medium. Similarly, a
31	high acrosome reaction rate, identified via FITC-PNA staining of human sperm samples, was found in the Maca
32	extract-containing HTF compared with that in the control medium. Human sperm motility in the Maca extract-
33	containing HTF was also increased compared with that in the control medium as measured using an SMAS.
34	Conclusions: Maca improved in vitro fertilization rates by inducing an acrosome reaction and increasing sperm
35	motility.
36	Keywords: acrosome reaction, in vitro fertilization, Lepidium meyenii, Maca, sperm motility

38 INTRODUCTION

39Human fertility rates are declining worldwide, and infertility is a serious and rapidly increasing problem in 40 reproductive medicine and public health. Infertility is defined as failure to achieve clinical pregnancy after 41 \geq 12 months of regular unprotected sexual intercourse [1], and its prevalence is approximately 9% [2]. It is 42known that the cause of infertility exists in the male partner in approximately half of all infertile couples. There 43are several causes of male infertility, including production of defective spermatozoa, obstruction of the 44reproductive tract, inflammation, and sexual disorders such as erectile dysfunction and retrograde ejaculation 45[3]. A recent review revealed that the prevalence of male infertility, defined as men reporting an experience of 46infertility (generally >12 months in duration), varied from 9.0% to 15.8% in surveys of general populations [4]. 47Treatment of male infertility has become a significant issue for urologists and physicians in reproductive 48medicine. Therefore, several technical innovations in surgical treatment, including microdissection testicular 49sperm extraction for patients with azoospermia and microsurgery for patients with varicoceles, have been 50reported [5, 6]. However, very few treatment options are available for idiopathic oligoasthenoteratozoospermia (OAT), which is the most common phenotype observed in male infertility. Although more than half of all 5152infertile couples seek medical care, no effective and reliable medicines have been developed or approved for 53patients with OAT so far [2]. To address this problem, several supplements, including vitamins B12, C, and E, 54and herbal medicines have been used clinically as OAT treatment options and have shown relatively favorable 55effects on spermatogenesis. Antioxidants such as coenzyme Q10 and L-carnitine have also been used to reverse 56oxidative stress-induced sperm dysfunction, and small clinical trials have shown their efficacy, particularly with

57	respect to sperm motility [7–9]. However, randomized control studies with larger numbers of participants have
58	not yet been performed to show clinical evidence for the recommendation of these antioxidants as OAT
59	treatment options. Thus, in practice, several antioxidants and other substances have been used for treating male
60	infertility based on the clinical experience of the attending physicians.
61	Among several candidate medications for male infertility, Lepidium meyenii (Maca) has been one of the
62	most popular supplements gaining increased attention as a treatment option. Maca is known as an antioxidant
63	supplement [10] with efficacy in several diseases and conditions. It has been reported that Maca may improve
64	hypertension, diabetes mellitus, dyslipidemia, and depression. With respect to sexual and reproductive function
65	in rats, Maca has favorable effects on sexual behavior [11], testicular weight [12], and spermatogenesis,
66	particularly at the initial stages [13]. In humans, treatment with Maca is reported to improve sexual desire
67	without a change in the state of mind in healthy adult men [14]. A systematic review of three randomized
68	clinical trials and two uncontrolled observational studies has already provided suggestive evidence for the
69	effectiveness of Maca in improving semen quality, although the total number of trials and the total sample size
70	of the included studies prevented concrete conclusions [15]. To date, the direct effect of Maca on sperm has not
71	been investigated.
72	In the present study, we evaluated the direct effect of Maca on the rate of successful in vitro fertilization
73	(IVF) in mice. We also investigated the direct effect of Maca on acrosome reaction in mice and humans and its
74	efficacy in improving human sperm motility.

76 MATERIALS AND METHODS

77 Animals

88	Preparation of Maca (Lepidium meyenii)
87	
86	libitum.
85	(60% \pm 20%), and light conditions throughout the experiments and were provided with food and water ad
84	University, Nagasaki, Japan). The mice were maintained under controlled temperature ($22^{\circ}C \pm 3^{\circ}C$), humidity
83	approved by the Institutional Committee of Laboratory Animal Experimentation (Nagasaki International
82	the Care and Use of Laboratory Animals (Guide for the Care and Use of Laboratory Animals. 2011) and were
81	cervical dislocation immediately prior to the experiments. All animal experiments conformed to the Guide for
80	animal experimentation facility of Nagasaki International University [16]. The animals were euthanized via
79	C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) in their acrosomes were bred in the
78	Female ICR mice (10 weeks old) and male BALB/cA mice were purchased from Japan SLC (Shizuoka, Japan).

89 Maca was collected, dried, and powdered in Japan and was obtained from Shokubunka Co. Ltd., Saitama, Japan.

- 90 Twenty milligrams of the air-dried Maca powder was added to 1 mL of dimethyl sulfoxide (DMSO) (D2650;
- 91 Sigma–Aldrich Japan, Tokyo, Japan), and the supernatant of this Maca solution was added to human tubal fluid

92 (HTF) medium (LifeGlobal Group, Guilford, CT, USA).

93

94 *IVF in mice*

95	Female mice were superovulated via intraperitoneal injection of 5 IU pregnant mare serum gonadotropin (Asuka
96	Inc., Tokyo, Japan), followed by a 5 IU human chorionic gonadotropin (Asuka Inc.) injection 46-48 h later, and
97	then euthanized via cervical dislocation 14-16 h later, immediately prior to the start of the experiment. Ovaries
98	with oviducts were transferred to 30-mm-diameter dishes filled with paraffin oil (Nacalai Tesque, Kyoto, Japan).
99	Cumulus-oocyte complexes were obtained from the ampullae of uterine tubes and transferred under a
100	stereomicroscope to the dishes, each containing a 200- μ L drop of HTF medium covered with paraffin oil. Two
101	to four cumulus–oocyte masses were transferred to each 200- μL drop of HTF medium covered with paraffin oil
102	for insemination. Approximately 10-month-old Balb/c mice were euthanized via cervical dislocation
103	immediately prior to the start of the experiments. Mature caudal epididymal sperm cells were collected for this
104	examination. Mature caudal epididymal sperm cells (approximately 8×10^6) from each mouse were incubated in
105	$200\mu\text{L}$ of HTF medium without bovine serum albumin (BSA), covered with paraffin oil. After 5 min, each
106	sperm suspension was transferred to conditioned medium for preincubation. The control conditioned medium
107	for sperm preincubation was HTF medium containing 0.4% BSA. Subsequently, 25-µL aliquots of the sperm
108	suspensions in HTF without BSA were transferred to 25 μL of conditioned medium samples containing twice
109	the concentration of Maca extract and were placed at 37° C in a humidified incubator under 5% CO ₂ /95% air
110	(motile sperm concentration, approximately 10,000 per mL). After 50 min, 2–4 µL aliquots of sperm from each
111	conditioned medium sample were used for insemination (final motile sperm concentration, 150 per mL). Motile
112	sperm swimming at the periphery of each drop were used for insemination, as described previously [17]. A
113	sperm suspension cultured in conditioned medium was transferred to the insemination drop. At 24 h after

114	insemination, the fertilization rate was determined as the proportion of two-cell-stage embryos among all
115	oocytes.
116	
117	Acrosome reaction in mouse sperm
118	To examine the acrosome reaction rate, sperm from transgenic mice expressing EGFP [16] were incubated in
119	each conditioned medium sample for 3 h and spotted onto glass slides with 5% glycerol. The acrosome status
120	was observed under a fluorescence microscope following propidium iodide staining.
121	
122	Acrosome reaction in human sperm
123	Human semen samples were obtained from fertile male volunteers via masturbation after 2-3 days of
124	abstinence, after they provided their informed consent. The semen was covered with 2 mL of HTF and incubated
125	at 37°C for 1 h. Then, 25- μ L aliquots of swim-up sperm from the semen in the HTF were transferred to 25 μ L of
126	the control conditioned medium or Maca extract-containing conditioned medium and placed at 37°C in a
127	humidified incubator under 5% $CO_2/95\%$ air for 4 h. The acrosome status was observed as previously described
128	[18]. The human sperm samples were spotted onto silane-coated Superfrost glass microslides (Matsunami Glass
129	Ind. Ltd., Osaka, Japan), treated with 70% methanol on ice for 10 min, and stained with fluorescein
130	isothiocyanate-conjugated peanut agglutinin (FITC-PNA) (L7381; Sigma-Aldrich, Japan).
131	

132 Human sperm motility

133	Sperm motility was analyzed using a sperm motility analysis system (SMAS) (SOLNET, Tokyo, Japan) [19].
134	Sperm in conditioned medium were spotted onto a 20-µm Leja counting chamber (standard Count Analysis
135	Chamber 20 micron; Nieuw-Vennep, The Netherlands) for the analysis of sperm motility. The SMAS consists of
136	a high-resolution digital scanning camera, personal computer with a digital frame grabber and image-processing
137	software, and computer monitor. The system records images at a rate of 1 frame per second (60 Hz) and can
138	analyze approximately 200 spermatozoa simultaneously in real time. A previous study showed that the results
139	obtained using the SMAS strongly correlated with those obtained from manual microscopic sperm analysis
140	based on the World Health Organization Laboratory Manual [19]. The procedures were approved by the regional
141	ethics committee of Juntendo University Urayasu Hospital.
142	
143	Statistical analysis
144	Data were expressed as average \pm SEM and compared between the groups using the Mann–Whitney U test. The
145	threshold for significance was $p < 0.05$. All statistical analyses were conducted using IBM SPSS version 24.0.
146	
147	RESULTS
148	Success rate of IVF in mice
149	The fertilization ability of sperm from wild-type C57BL/6 mice was higher when using the standard medium.
150	When sperm from aged BALB/cA mice (age > 48 weeks) were used [20], IVF was difficult and the fertilization
151	ability of the sperm varied between mice. We tested whether the fertilization rate increased because of the

152	addition of Maca extract. The fertilization rates in HTF medium and Maca extract-containing medium are
153	shown in Fig. 1. The fertilization rate in HTF medium containing Maca extract at a concentration of 4% (w/v)
154	with 1% DMSO was significantly higher ($33.4\% \pm 7.6\%$) than that in HTF medium without Maca extract
155	(14.3% \pm 4.6%; <i>p</i> < 0.05). The fertilization rates in HTF medium with Maca extract at concentrations of 2% and
156	8% (w/v) were also higher (23.3% \pm 5.9% and 20.7% \pm 9.6%, respectively) than that in HTF medium without
157	Maca extract. However, these differences were not statistically significant.
158	
159	Insert Fig. 1 here
160	
161	Acrosome reaction rate in mouse sperm
161 162	Acrosome reaction rate in mouse sperm We examined the sperm acrosome reaction rate in Maca extract-containing HTF medium using mouse sperm
161 162 163	Acrosome reaction rate in mouse sperm We examined the sperm acrosome reaction rate in Maca extract-containing HTF medium using mouse sperm expressing GFP in their acrosomes. The rates of acrosome-reacted sperm in HTF medium containing Maca
161 162 163 164	Acrosome reaction rate in mouse sperm We examined the sperm acrosome reaction rate in Maca extract-containing HTF medium using mouse sperm expressing GFP in their acrosomes. The rates of acrosome-reacted sperm in HTF medium containing Maca extract at concentrations of 4.0%, 8.0%, and 16.0% (w/v) with 1% DMSO were significantly higher
 161 162 163 164 165 	Acrosome reaction rate in mouse sperm We examined the sperm acrosome reaction rate in Maca extract-containing HTF medium using mouse sperm expressing GFP in their acrosomes. The rates of acrosome-reacted sperm in HTF medium containing Maca extract at concentrations of 4.0%, 8.0%, and 16.0% (w/v) with 1% DMSO were significantly higher (68% ± 3.1%, 71% ± 1.2%, and 71% ± 2.9%, respectively) than those in medium without Maca (44% ± 5.1%;
 161 162 163 164 165 166 	Acrosome reaction rate in mouse sperm We examined the sperm acrosome reaction rate in Maca extract-containing HTF medium using mouse sperm expressing GFP in their acrosomes. The rates of acrosome-reacted sperm in HTF medium containing Maca extract at concentrations of 4.0%, 8.0%, and 16.0% (w/v) with 1% DMSO were significantly higher (68% ± 3.1%, 71% ± 1.2%, and 71% ± 2.9%, respectively) than those in medium without Maca (44% ± 5.1%; p < 0.05, Fig. 2). The rate of acrosome-reacted sperm in HTF medium containing Maca extract at a
 161 162 163 164 165 166 167 	Acrosome reaction rate in mouse sperm We examined the sperm acrosome reaction rate in Maca extract-containing HTF medium using mouse sperm expressing GFP in their acrosomes. The rates of acrosome-reacted sperm in HTF medium containing Maca extract at concentrations of 4.0%, 8.0%, and 16.0% (w/v) with 1% DMSO were significantly higher (68% ± 3.1%, 71% ± 1.2%, and 71% ± 2.9%, respectively) than those in medium without Maca (44% ± 5.1%; $p < 0.05$, Fig. 2). The rate of acrosome-reacted sperm in HTF medium containing Maca extract at a concentration of 2.0% (w/v) with 1% DMSO was also higher (59% ± 5.5%) than that in HTF medium without
 161 162 163 164 165 166 167 168 	Acrosome reaction rate in mouse spermWe examined the sperm acrosome reaction rate in Maca extract-containing HTF medium using mouse spermexpressing GFP in their acrosomes. The rates of acrosome-reacted sperm in HTF medium containing Macaextract at concentrations of 4.0%, 8.0%, and 16.0% (w/v) with 1% DMSO were significantly higher(68% ± 3.1%, 71% ± 1.2%, and 71% ± 2.9%, respectively) than those in medium without Maca (44% ± 5.1%; $p < 0.05$, Fig. 2). The rate of acrosome-reacted sperm in HTF medium containing Maca extract at aconcentration of 2.0% (w/v) with 1% DMSO was also higher (59% ± 5.5%) than that in HTF medium withoutMaca extract. However, this difference was not statistically significant.

170 Insert Fig. 2 here

172 Acrosome reaction rate in human sperm

- 173 To investigate the effect of Maca on human sperm, the acrosome reaction in Maca extract-containing HTF
- 174 medium was assessed using FITC-PNA staining. The rate of acrosome-reacted sperm in HTF medium
- 175 containing Maca extract at a concentration of 1.0% (w/v) with 1% DMSO was significantly higher
- 176 (69% \pm 7.3%) than that in medium without Maca (23% \pm 5.4%; p < 0.01, Fig. 3). The rates of acrosome-reacted
- 177 sperm in HTF medium containing Maca extract at concentrations of 0.5% and 2.0% (w/v) with 1% DMSO were
- also higher $(39.6\% \pm 3.2\%$ and $39.8\% \pm 5.8\%$, respectively) than those in HTF medium without Maca extract,
- 179 but these differences were not statistically significant.
- 180
- 181 Insert Fig. 3 here
- 182

183 Human sperm motility and amplitude of lateral head displacement (ALH)

- 184 The motility of human sperm in Maca extract-containing HTF medium was analyzed in detail using SMAS
- 185 (Table.1). The percentage of motile sperm in the medium containing Maca extract was significantly higher
- 186 (82.1% \pm 5.1%) than that in the control medium containing 1% DMSO (53.9% \pm 9.5%; *p* < 0.05, Fig. 4). ALH
- 187 in the medium containing Maca extract was also higher $(2.9 \pm 0.3 \,\mu\text{m})$ than that in the control medium
- 188 ($2.4 \pm 0.2 \,\mu$ m). However, this difference was not statistically significant.

190 Insert Table1 and Fig. 4 here

DISCUSSION

193	Maca belongs to the plant family Brassicaceae and is native to Peru. It has traditionally been used as folk
194	medicine and is considered a food supplement. It was first cultivated at least 2000 years ago in the Andes
195	Mountains of Peru at an altitude of 4000–4500 m. There are numerous substances in the tubers of Maca; several
196	typical components include amino acids, alkaloids (macaines), fatty acids (linoleic, palmitic, oleic acid, etc.),
197	tannins, saponins, and several microelements (Cu, Su, Mn, Al, etc.) [10]. Because Maca is rich in these
198	substances, it has significant potential to treat several diseases and disorders. Maca has been thought to improve
199	sexual dysfunction and male infertility since long, even before it was reported that consumption of Maca extract
200	increased serum testosterone concentration by enhancing the steroidogenic ability of Leydig cells and improving
201	sexual performance parameters in an animal model [11, 21]. Furthermore, a previous study in humans showed
202	that the administration of Maca improves seminal volume, sperm count per ejaculum sample, the number of
203	motile sperms, and sperm motility despite the fact that it does not affect the levels of relevant serum hormones,
204	including serum luteinizing hormone, follicle-stimulating hormone (FSH), prolactin, testosterone, or estradiol
205	[12]. This indicates that improved semen quality observed because of the administration of Maca might be
206	caused by enhanced bioavailable testosterone or testosterone receptors and an improved response of Sertoli cells
207	to FSH [22, 23]. A systematic review recently supported the effectiveness of Maca in improving semen quality
208	in humans [15]. Maca has currently gained increased attention in reproductive medicine, particularly in male

209	infertility, because no reliable and effective medical treatment has been established for this condition so far.
210	However, the underlying mechanism of Maca in male infertility, particularly the direct effect of Maca on sperm,
211	has not been elucidated.
212	In the present study, we first investigated whether the addition of Maca to culture medium improved the
213	rate of successful IVF. As expected, in mice, the rate of fertilization in medium containing Maca was
214	significantly increased compared with that in the control medium. Our results indicated that HTF medium
215	containing Maca extract at a concentration of 4% (w/v) was the most suitable for IVF in mice. Second, we
216	evaluated the influence of Maca on acrosome reaction as another direct effect. In mouse samples, we showed
217	that the rate of acrosome-reacted sperm in HTF medium containing Maca extract was significantly higher than
218	that in medium without Maca extract. Furthermore, this tendency was also found in human sperm, although the
219	effective concentration of Maca was different from that in mice. Finally, we showed that Maca was clearly
220	beneficial for sperm motility in humans. On the basis of our findings, we speculate that adding Maca to the
221	medium used during IVF may increase its success rate by improving acrosome reaction and sperm motility.
222	Several studies have reported improvement in sperm quality using pharmaceutical agents such as caffeine,
223	pentoxifylline, theophylline, Chinese herbal medicine, and myo-inositol, in vivo and/or in vitro. Caffeine,
224	pentoxifylline, and theophylline are considered to be inhibitors of phosphodiesterase and have been primarily
225	used in vitro in humans. Caffeine is a methylxanthine alkaloid that causes an increase in intracellular cyclic
226	adenosine monophosphate (cAMP) and is reported to induce the acrosome reaction in boar and human sperm in
227	vitro [24, 25]. Furthermore, caffeine may induce sperm hyperactivation in the course of promoting activation of

228	calcium ion-permeable cation channels in the plasma membrane of sperm [26]. Pentoxifylline, a methylxanthine
229	derivative, decreases blood viscosity because of platelet inhibition and is primarily used for symptomatic relief
230	of intermittent thrombosis [27]. In contrast to caffeine, pentoxifylline significantly increases sperm viability in
231	infertile men without improving sperm motility [28]. Apart from its lack of effect on increasing the acrosome
232	reaction rate and sperm motility, pentoxifylline treatment also does not increase sperm responsiveness to the
233	acrosome reaction induced by stimulation with follicular fluid and the ionophore A23187 [23]. However,
234	pentoxifylline significantly enhances hyperactivated sperm motility and tight binding to the homologous zona
235	pellucida [29]. Although caffeine and pentoxifylline have equal inhibitory effects on sperm phosphodiesterase,
236	their effects are different. Myo-inositol is one of the most biologically important agents and acts in concert with
237	group B vitamins. Administration of myo-inositol improves spermatozoa concentration in patients with
238	oligoasthenospermia but does not significantly improve sperm motility [30]. Myo-inositol increases the number
239	of spermatozoa with high mitochondrial membrane potential (MMP) in vitro and decreases the number of those
240	with low MMP in patients with oligoasthenospermia [31]. MMP is considered a marker of apoptosis because
241	viable cells show high MMP and apoptotic cells show low MMP. Fertile men have spermatozoa with high MMP,
242	whereas infertile men have spermatozoa with low MMP. In herbal medicine, the preparation "Hochuekkito" has
243	also been used clinically to treat male infertility in Japan. Although common oral consumption of Hochuekkito
244	may be expected in the future, it has already been suggested to have a direct protective effect on sperm in
245	infertile men [32].

246 The exact mechanisms of fertilization processes, including those of the acrosome reaction and

247	hyperactivation, remain unknown. The acrosome reaction (i.e., exocytosis of the sperm vesicle) is a prerequisite
248	for fertilization. We showed that culture medium containing Maca extract improved the fertilization rate in mice
249	and that it was not dose related (Fig. 1). There are no reports about the Maca specific toxicities; however, it is expected
250	that excess amounts of chemical substances can cause negative effects. We also showed that the medium containing
251	Maca extract increased the rate of acrosome-reacted sperm in mouse and human samples (Figs. 2 and 3). These
252	results support the improvement in infertility due to Maca extract via induction of the acrosome reaction. There
253	is difference in suitable concentration of Maca for acrosome reaction between mouse and human sperm. Optimal medium
254	varies among species. It is possible that the quantity of the molecules inside the sperm on which Maca acts and the influence
255	of Maca on the molecules may vary depending on species. In fact, it is known from an IVF experimental model that albumin
256	has an influence on acrosome reaction, and that albumin draws fat from the membrane of sperm and by doing so gradually
257	facilitates the induction of acrosome reaction and promotes the sperm to mature and become active. The amounts of albumin
258	to be added to the medium for conducting efficient IVF are slightly different between mice and humans. Furthermore, the
259	albumin from different lots can cause a large change on the acrosome reactions and the fertility rate. In this experiment as
260	well, the complicated conditions, as stated above, are considered to be the reasons why the suitable Maca concentration was
261	different between mice and humans.
262	Hyperactivation may support sperm in detachment from the endosalpingeal epithelium, enhancing their ability
263	to easily swim through viscoelastic substances. In addition, hyperactivation assists sperm in penetrating the zona
264	pellucida [33]. An association between ALH and sperm hyperactivation has been reported [34]. ALH in the
265	present study tended to be higher in the Maca extract-containing medium than in the control medium, although

266	this difference was not statistically significant (Fig. 4). In Table 1, there is difference between sperm concentration
267	with and without Maca extract though not statistically significant. We consider that this tendency was not due to Maca, but
268	rather, it was because the substances from the sperm might have contaminated the medium and possibly influenced the
269	results. These results suggest that Maca extract can induce hyperactivation in humans. Maca is a type of alkaloid
270	similar to caffeine. It is possible that Maca induces the acrosome reaction and hyperactivation because of an
271	increase in cAMP and the number of spermatozoa with high MMP. Furthermore, it has recently been suggested
272	that some hormones, including progesterone, melatonin, and serotonin, enhance hyperactivation through specific
273	membrane receptors and that 17β -estradiol suppresses such enhancement by progesterone and melatonin via a
274	membrane estrogen receptor [35]. Because plant extracts can have several functions, including estrogenic
275	actions, depending on the flavonoids present, it is possible that Maca also has a specific estrogenic action. If so,
276	such an action may also be associated with our findings in the present study. It was recently shown that the rate
277	of IVF in mice was improved by adding an aqueous extract of licorice to the artificial insemination culture
278	medium. Furthermore, it was reported that isoliquiritigenin and formononetin were the active molecules in
279	licorice that contributed to the improved IVF rate [36]. Similarly, the identification of molecules in Maca that
280	contribute to the improvement in IVF has begun to attract increased attention.
281	There are many reports about past experiments regarding the effectiveness of oral intake of Maca. In this study, it became
282	clear that some substances in Maca affect the ejaculated sperm. It is speculated that some of the substances, which can affect
283	the ejaculated sperm, might have affected the activity of the ejaculated sperm through the body fluid even when Maca was
284	taken orally. Additionally, because the quality of IVF medium was improved, there is a possibility that Maca can lead to

285	desirable results for women when it is taken orally.
-----	--

286	We showed the	hat <i>Lepidium n</i>	neyenii (Maca) added to cultur	e medium may	improve the	IVF rate of mouse sperm.
-----	---------------	-----------------------	---------------	-------------------	--------------	-------------	--------------------------

- 287 We also showed that Maca is beneficial in inducing an acrosome reaction in mouse and human sperm and an
- 288 increase in motility in human sperm. Our study provides evidence that Maca has a direct effect on sperm in
- 289 improving fertilization rates.
- 290

291 ACKNOWLEDGEMENTS

- 292 This work was partly supported by facilities of the Nagasaki International University. *Lepidium meyenii* (Maca)
- 293 for the study were provided by Shokubunka Co. Ltd., Saitama, Japan. The study was not supported by any
- 294 specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
- 295

296 **DISCLOSURES**

297 *Conflict of interest:* None of the authors declare competing financial interests.

298 Human and Animal Rights: All procedures followed were in accordance with the ethical standards of the

- 299 responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration
- 300 of 1964 and later revision. Informed consent or substitute for it was obtained from all patients for being included
- 301 in the study. Additionally, the protocol for the research was approved by the Institutional Review Board of the
- 302 Juntendo University Urayasu Hospital, Chiba, Japan. All institutional and national guidelines for the care and
- 303 use of laboratory animals were followed.

304		
305		
306	REFERI	ENCES
307		
308	1.	Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al.
309	Internatio	onal committee for monitoring assisted reproductive technology (ICMART) and the world health
310	organizat	tion (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009; 92: 1520–4.
311	2.	Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and
312	treatment	t-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007; 22: 1506–12.
313	3.	de Kretser DM. Male infertility. Lancet. 1997; 349: 787–90.
314	4.	Barratt CLR, Björndahl L, De Jonge CJ, Lamb DJ, Osorio Martini F, McLachlan R, et al. The diagnosis
315	of male i	nfertility: an analysis of the evidence to support the development of global WHO guidance-challenges
316	and futur	e research opportunities. Hum Reprod Update. 2017; 23: 660–80.
317	5.	Dubin L, Amelar RD. Varicocele size and results of varicocelectomy in selected subfertile men with
318	varicocel	e. Fertil Steril. 1970; 21: 606–9.
319	6.	Schlegel PN. Testicular sperm extraction: microdissection improves sperm yield with minimal tissue
320	excision.	Hum Reprod. 1999; 14: 131–5.
321	7.	Jarow JP. Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover
322	trial. J Uı	rol. 2003; 170: 677.

- 323 8. Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive
- hormones in infertile men. J Urol. 2009; 182: 237–48.
- 325 9. Balercia G, Buldreghini E, Vignini A, Tiano L, Paggi F, Amoroso S, et al. Coenzyme Q10 treatment in
- 326 infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril.
- 327 2009; 91: 1785–92.
- 328 10. Večeřa R, Orolin J, Škottová N, Kazdová L, Oliyarnik O, Ulrichová J, Šimánek V. The influence of
- 329 Maca (Lepidium meyenii) on antioxidant status, lipid and glucose metabolism in rat. Plant Foods Hum Nutr. 2007;
- 330 62: 59–63.
- 331 11. Cicero AF, Bandieri E, Arletti R. Lepidium meyenii Walp. improves sexual behaviour in male rats
- independently from its action on spontaneous locomotor activity. J Ethnopharmacol. 2001;75: 225–9.
- 333 12. Gonzales GF, Cordova A, Gonzales C, Chung A, Vega K, Villena A. Lepidium meyenii (Maca)
- improved semen parameters in adult men. Asian J Androl. 2001; 3: 301–3.
- 13. Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat.
- 336 Ann N Y Acad Sci. 1952; 55: 548–73.
- 337 14. Gonzales GF, Córdova A, Vega K, Chung A, Villena A, Góñez C, Castillo S. Effect of Lepidium meyenii
- 338 (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men.
- 339 Andrologia. 2002; 34: 367–72.
- 340 15. Lee MS, Lee HW, You S, Ha KT. The use of Maca (Lepidium meyenii) to improve semen quality: A
- 341 systematic review. Maturitas. 2016; 92: 64–9.

- 342 16. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. 'Green mice' as a source of ubiquitous
- 343 green cells. FEBS Lett. 1997; 407: 313–9.
- 344 17. Takeo T, Hoshii T, Kondo Y, Toyodome H, Arima H, Yamamura KI, et al. Methyl-beta-cyclodextrin
- 345 improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux
- 346 from the cells. Biol Reprod. 2008; 78: 546–51.
- 347 18. Kitamura K, Tanaka H, Nishimune Y. Haprin, a novel haploid germ cell-specific RING finger protein
- involved in the acrosome reaction. J Biol Chem. 2003; 278: 44417–23.
- 349 19. Komori K, Tsujimura A, Ishijima S, Tanjapatkul P, Fujita K, Matsuoka Y, et al. Comparative study of
- 350 sperm motility analysis system and conventional microscopic semen analysis. Reprod Med Biol. 2006; 5: 195-
- 351 200.
- 352 20. Vasudevan K, Sztein JM. Treatment of sperm with extracellular adenosine 5'-triphosphate improves the
- in vitro fertility rate of inbred and genetically modified mice with low fertility. Theriogenology. 2011; 76: 729-
- 354 36.
- 355 21. Ohta Y, Yoshida K, Kamiya S, Kawate N, Takahashi M, Inaba T, et al. Feeding hydroalcoholic extract
- 356 powder of Lepidium meyenii (Maca) increases serum testosterone concentration and enhances steroidogenic
- ability of Leydig cells in male rats. Andrologia. 2016; 48: 347–54.
- 358 22. Gonzales GF, Ruiz A, Gonzales C, Villegas L, Cordova A. Effect of Lepidium meyenii (Maca) roots on
- 359 spermatogenesis of male rats. Asian J Androl. 2001; 3: 231–3.
- 360 23. Gonzales GF, Córdova A, Vega K, Chung A, Villena A, Góñez C. Effect of Lepidium meyenii (Maca),

- 361 a root with aphrodisiac and fertility-enhancing properties, on serum reproductive hormone levels in adult healthy
- 362 men. J Endocrinol. 2003; 176: 163–8.
- 363 24. Tesarik J, Mendoza C, Carreras A. Effects of phosphodiesterase inhibitors caffeine and pentoxifylline
- 364 on spontaneous and stimulus-induced acrosome reactions in human sperm. Fertil Steril. 1992;58: 1185–90.
- 365 25. Funahashi H, Nagai T. Regulation of in vitro penetration of frozen-thawed boar spermatozoa by caffeine
- 366 and adenosine. Mol Reprod Dev. 2001; 58: 424–31.
- 367 26. Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) store is involved
- in regulating sperm hyperactivated motility. Biol Reprod. 2001; 65: 1606–15.
- 369 27. Magnusson M, Gunnarsson M, Berntorp E, Björkman S, Höglund P. Effects of pentoxifylline and its
- metabolites on platelet aggregation in whole blood from healthy humans. Eur J Pharmacol. 2008; 581: 290–5.
- 371 28. Ghasemzadeh A, Karkon-Shayan F, Yousefzadeh S, Naghavi-Behzad M, Hamdi K. Study of
- pentoxifylline effects on motility and viability of spermatozoa from infertile asthenozoospermic males. Niger Med
 J. 2016; 57: 324–8.
- 29. Nassar A, Mahony M, Morshedi M, Lin MH, Srisombut C, Oehninger S. Modulation of sperm tail
- protein tyrosine phosphorylation by pentoxifylline and its correlation with hyperactivated motility. Fertil Steril.
 1999; 71: 919–23.
- 377 30. Gulino FA, Leonardi E, Marilli I, Musmeci G, Vitale SG, Leanza V, Palumbo MA. Effect of treatment
- 378 with myo-inositol on semen parameters of patients undergoing an IVF cycle: in vivo study. Gynecol Endocrinol.

379 2016; 32: 65-8.

380	31.	Condorelli RA, La Vignera S, Di Bari F, Unfer V, Calogero AE. Effects of myoinositol on sperm
381	mitochon	drial function in-vitro. Eur Rev Med Pharmacol Sci. 2011; 15: 129–34.
382	32.	Yamanaka M, Kitamura M, Kishikawa H, Tsuboniwa N, Koga M, Nishimura K, et al. [Direct effects
383	of Chines	e herbal medicine "hochuekkito" on sperm movement]. Nihon Hinyokika Gakkai Zasshi. 1998; 89: 641–
384	6. [Articl	e in Japanese].
385	33.	Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006; 12:
386	23–37.	
387	34.	Chan PJ, Tredway DR, Henig I, Prough SG. Cyclic CMP (cytidine 3',5'-monophosphate) suppresses
388	changes i	n human sperm amplitude of lateral head displacement and hyperactivation. Experientia. 1990; 46: 734–
389	6.	
390	35.	Fujinoki M, Takei GL, Kon H. Non-genomic regulation and disruption of spermatozoal in vitro
391	hyperacti	vation by oviductal hormones. J Physiol Sci. 2016; 66: 207–12.
392	36.	Tung NH, Shoyama Y, Wada M, Tanaka H. Two activators of in vitro fertilization in mice from licorice.
393	Biochem	Biophys Res Commun. 2015; 467: 447–50.
394		

395 FIGURE LEGENDS

- **Fig. 1:** Rate of successful fertilization determined as the proportion of two-cell-stage embryos among all mouse
- 397 oocytes in the experiment
- 398 The fertilization rate in medium containing Maca extract at a concentration of 4% (w/v) with 1% DMSO was
- significantly higher $(33.4\% \pm 7.6\%)$ than that in HTF medium without Maca extract $(14.3\% \pm 4.6\%; p < 0.05)$.
- 400 The fertilization rates in medium containing Maca extract at concentrations of 2% and 8% (w/v) were also
- 401 higher ($23.3\% \pm 5.9\%$ and $20.7\% \pm 9.6\%$, respectively) than those in HTF medium without Maca extract, but
- 402 these differences were not statistically significant. HTM, human tubal fluid; DMSO, dimethyl sulfoxide.

403

- 404 **Fig. 2:** The rate of acrosome reaction in mouse sperm
- 405 The rates of acrosome-reacted sperm in HTF medium containing Maca extract at concentrations of 4.0%, 8.0%,
- 406 and 16.0% (w/v) with 1% DMSO were significantly higher ($68\% \pm 3.1\%$, $71\% \pm 1.2\%$, and $71\% \pm 2.9\%$,
- 407 respectively) than those in medium without Maca extract ($44\% \pm 5.1\%$; p < 0.05). The rate of acrosome-reacted
- 408 sperm in HTF medium containing Maca extract at a concentration of 2.0% (w/v) with 1% DMSO was also
- 409 higher ($59\% \pm 5.5\%$) than that in HTF medium without Maca extract, but this difference was not statistically
- 410 significant. HTM, human tubal fluid; DMSO, dimethyl sulfoxide.

- 412 **Fig. 3:** The rate of acrosome reaction in human sperm
- 413 The rate of acrosome-reacted sperm in HTF medium containing Maca extract at a concentration of 1.0% (w/v)

414	with 1% DMSO was significantly higher (69% \pm 7.3%) than that in medium without Maca extract (23% \pm 5.4%;
415	p < 0.01). The rates of acrosome-reacted sperm in HTF medium containing Maca extract at concentrations of
416	0.5% and 2.0% (w/v) with 1% DMSO were also higher (39.6% \pm 3.2% and 39.8% \pm 5.8%, respectively) than
417	those in HTF medium without Maca extract, but these differences were not statistically significant. HTM,
418	human tubal fluid; DMSO, dimethyl sulfoxide.
419	
420	Fig. 4: Sperm motility and amplitude of lateral head displacement in medium with or without Maca extract
421	Sperm motility was analyzed using a sperm motility analysis system. The percentage of sperm motility in the
422	Maca extract-containing medium was significantly higher ($82.1\% \pm 5.1\%$) than that in the control medium
423	(53.9% \pm 9.5%; <i>p</i> < 0.05). The amplitude of lateral head displacement in the Maca extract-containing medium
424	was also higher (2.9 \pm 0.3 $\mu m)$ than that in the control medium (2.4 \pm 0.2 μm), but this difference was not
425	statistically significant.

427 Table 1 Results of sperm motility analysis using semen from healthy men in medium with or without Maca

428 extract (N = 5).

⁴²⁹

	With Mass outpast	Without Maca	P value	
	with Maca extract	extract		
Concentration (×10 ⁶)	95.5 ± 54.1	60.5 ± 20.6	NS	
Total sperm count (×10 ⁶)	190.9 ± 108.1	120.6 ± 41.5	NS	
Sperm motility (%)	82.1 ± 5.1	53.9 ± 9.5	<0.05	
Straight-line velocity (µm/s)	32.1 ± 6.4	34.7 ± 4.4	NS	
Curvilinear velocity (µm/s)	86.3 ± 11.3	94.6 ± 8.6	NS	
Linearity	0.36 ± 0.03	0.36 ± 0.02	NS	
Amplitude of lateral head	29 ± 03	24 + 02	NS	
Displacement (µm)	2.7 ± 0.5	20.2		
Beat-cross frequency (Hz)	13.4 ± 0.5	11.9 ± 0.9	NS	

Fig 3

Fig 4