Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome.

Hiromi Aoi^{1,2}, Takeshi Mizuguchi¹, Jose Ricardo Ceroni³, Veronica Eun Hue Kim³, Isabel Furquim³, Rachel S Honjo³, Takuma Iwaki⁴, Toshifumi Suzuki², Futoshi Sekiguchi¹, Yuri Uchiyama^{1,5}, Yoshiteru Azuma¹, Kohei Hamanaka¹, Eriko Koshimizu¹, Satoko Miyatake^{1,6}, Satomi Mitsuhashi¹, Atsushi Takata¹, Noriko Miyake¹, Satoru Takeda², Atsuo Itakura², Debora R Bertola³, Chong Ae Kim³, Naomichi Matsumoto¹

¹Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; ²Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan; ³Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; ⁴Department of Pediatrics, University Hospital, Faculty of Medicine, Kagawa University, Kagawa, Japan; ⁵Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; ⁶Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan.

These authors contributed equally: Chong Ae Kim, Naomichi Matsumoto

Corresponding author: Naomichi Matsumoto, Department of Human Genetics, Yokohama City

University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.

Tel.: +81 45787 2606, Fax: +81-45 786 5219, E-mail: naomat@yokohama-cu.ac.jp

Conflict of Interest

The authors declare no conflict of interest.

1 ABSTRACT

2	Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder with specific dysmorphic
3	features. Pathogenic genetic variants encoding cohesion complex subunits and interacting proteins
4	(e.g., NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major cause of CdLS. However, there
5	are many clinically diagnosed cases of CdLS without pathogenic variants in these genes. To identify
6	further genetic causes of CdLS, we performed whole exome sequencing in 57 CdLS families,
7	systematically evaluating both single nucleotides variants (SNVs) and copy number variations
8	(CNVs). We identified pathogenic genetic changes in 36 out of 57 (63.2 %) families, including 32
9	SNVs and four CNVs. Two known CdLS genes, NIPBL and SMC1A, were mutated in 23 and two
10	cases, respectively. Among the remaining 32 individuals, four genes (ANKRD11, EP300, KMT2A,
11	and SETD5) each harbored a pathogenic variant in a single individual. These variants are known to
12	be involved in CdLS-like. Furthermore, pathogenic CNVs were detected in NIPBL, MED13L, and
13	EHMT1, along with pathogenic SNVs in ZMYND11, MED13L, and PHIP. These three latter genes
14	were involved in diseases other than CdLS and CdLS-like. Systematic clinical evaluation of all
15	patients using a recently proposed clinical scoring system showed that ZMYND11, MED13L, and
16	PHIP abnormality may cause CdLS or CdLS-like.
17	

18

19 INTRODUCTION

20	Cornelia de Lange syndrome (CdLS, MIM #122470, #300590, #610759, #614701, #300882) is a rare
21	neurodevelopmental disorder characterized by dysmorphic features, prenatal onset growth restriction,
22	hirsutism, upper limb reduction defects (which range from subtle phalangeal abnormalities to
23	oligodactyly), developmental delay, and intellectual disability. ¹ Prevalence of CdLS has been
24	estimated at 1/10,000 to 1/30,000 of live births. ² In addition to these cardinal phenotypes, patients
25	show cardiac anomalies, gastroesophageal reflux, seizures, and behavioral problems. ³ A combination
26	of signs and symptoms define the classic CdLS phenotype, which is easily recognized from birth by
27	experienced pediatricians and clinical geneticists. However, CdLS is a genetically heterogeneous
28	disorder presenting with extensive phenotypic variability from mild to severe, and with different
29	degrees of facial and limb abnormalities. In addition, CdLS clinically overlaps with several other
30	diseases including Bohring-Optiz syndrome, CHOPS syndrome, and Fryns syndrome. ^{4, 5} Such
31	heterogeneity makes it difficult to clearly distinguish CdLS from other clinically overlapping diseases.
32	Recently, an international consensus group provided clinical criteria for CdLS. ⁶ This criteria uses a
33	scoring system comprised of cardinal and suggestive features.
34	To date, pathogenic variants in at least 15 genes are known to cause CdLS. ⁷⁻¹⁰ In this regard, cohesin
35	complex or its functionally related genes (e.g., nipped B-like protein [NIPBL], structural
36	maintenance of chromosome 1A [SMC1A], SMC3, histone deacetylase 8 [HDAC8], and RAD21

37	cohesin complex component [RAD21]) have been implicated. Approximately 60% of CdLS patients
38	harbor various NIPBL variants. ¹ Cohesin is a multisubunit protein complex consisting of four core
39	proteins: SMC1, SMC3, RAD21, and stromal antigen (STAG). ⁶ Chromatin loading of cohesion is
40	regulated by NIPBL. ¹¹ The cohesin complex plays a significant role in mediating sister chromatid
41	cohesion, DNA double-strand break repair, transcriptional regulation, and chromatin organization.
42	Abnormalities of cohesion complex and its related genes in humans are known as cohesinopathy. ¹²
43	In addition, variants in AFF4, ANKRD11, ARID1B, BRD4, EP300, ESPL1, KMT2A, PDGFRB,
44	SETD5, and TAF6 also cause a CdLS-like phenotype. ^{7-9, 13-15}
45	In this study, we investigated 57 clinically suspected CdLS individuals by whole exome sequencing
46	(WES). Genetic findings, including single nucleotide variants (SNVs) and copy number variations
47	(CNVs), together with clinical features obtained using recent clinical criteria are presented and
48	discussed.
49	
50	METHODS
51	Subjects
52	In this study, 57 patients were recruited from 57 families, consisting of 56 Brazilian and one
53	Japanese patients. Most of the Brazilian patients were referred by the Brazilian Association of
54	Cornelia de Lange Syndrome (CdLS Brazil) and had the clinical diagnosis suspected by

 $\mathbf{5}$

55	pediatricians and/or geneticists from all over the country based on distinctive features such as
56	synophrys, arched eyebrows, long philtrum, upper limb abnormalities, and hirsutism. For
57	comparison of clinical manifestations within our cohort and genotype-phenotype correlations,
58	clinical details (including atypical symptoms) were retrospectively reviewed based on recent clinical
59	criteria reported by Kline <i>et al.</i> ⁶ Clinical information was obtained from all 57 patients (Table S1).
60	Peripheral blood leukocytes were collected from patients and their parents after obtaining informed
61	consent. Parental samples were available except for five families (Families 6, 7, 10, 22, and 30). This
62	study was approved by the Institutional Review Boards of Yokohama City University, Faculty of
63	Medicine, and University of Sao Paulo, Faculty of Medicine.
64	
64 65	Whole exome sequencing
64 65 66	Whole exome sequencing Genomic DNA was extracted from whole blood sample using QuickGene-610L (Fujifilm, Tokyo,
64 65 66 67	Whole exome sequencing Genomic DNA was extracted from whole blood sample using QuickGene-610L (Fujifilm, Tokyo, Japan) according to the manufacturer's protocol. Genomic DNA was sheared using a S220 Focused-
64 65 66 67 68	Whole exome sequencing Genomic DNA was extracted from whole blood sample using QuickGene-610L (Fujifilm, Tokyo, Japan) according to the manufacturer's protocol. Genomic DNA was sheared using a S220 Focused- ultrasonicator (Covaris, Woburn, MA, USA) and captured using the SureSelect Human All Exon V6
64 65 66 67 68 69	Whole exome sequencing Genomic DNA was extracted from whole blood sample using QuickGene-610L (Fujifilm, Tokyo, Japan) according to the manufacturer's protocol. Genomic DNA was sheared using a S220 Focused- ultrasonicator (Covaris, Woburn, MA, USA) and captured using the SureSelect Human All Exon V6 Kit (Agilent Technologies, Santa Clara, CA, USA). Paired-end libraries were sequenced on an
 64 65 66 67 68 69 70 	Whole exome sequencing Genomic DNA was extracted from whole blood sample using QuickGene-610L (Fujifilm, Tokyo, Japan) according to the manufacturer's protocol. Genomic DNA was sheared using a S220 Focused- ultrasonicator (Covaris, Woburn, MA, USA) and captured using the SureSelect Human All Exon V6 Kit (Agilent Technologies, Santa Clara, CA, USA). Paired-end libraries were sequenced on an Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA) with 101-bp paired-end reads.
 64 65 66 67 68 69 70 71 	Whole exome sequencing Genomic DNA was extracted from whole blood sample using QuickGene-610L (Fujifilm, Tokyo, Japan) according to the manufacturer's protocol. Genomic DNA was sheared using a S220 Focused- ultrasonicator (Covaris, Woburn, MA, USA) and captured using the SureSelect Human All Exon V6 Kit (Agilent Technologies, Santa Clara, CA, USA). Paired-end libraries were sequenced on an Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA) with 101-bp paired-end reads. Quality-controlled reads were aligned to the human reference genome (UCSC hg19, NCBI build

- 73 polymerase chain reaction (PCR) duplications using Picard (http://broadinstitute.github.io/picard/),
- variants were called using Genome Analysis Tool Kit (GATK)
- 75 (https://software.broadinstitute.org/gatk/index.php). Called variants were annotated using
- 76 ANNOVAR (http://annovar.openbioinformatics.org/en/latest/). Exonic and intronic variants within
- 30 bp from exon–intron boundaries were examined. Synonymous variants and variants with minor
- allele frequencies ≥ 0.01 in our in-house exome database of 575 Japanese individuals or control
- 79 population databases (including the Exome Aggregation Consortium Browser population (ExAC)
- 80 [http://exac.broadinstitute.org/] and National Heart, Lung, and Blood Institute (NHLBI) exome
- 81 variant server [http://evs.gs.washington.edu/EVS/]) were removed. Missense variants were evaluated
- 82 using Sorting Intolerant From Tolerant (SIFT) (http://sift.jcvi.org/), Polymorphism Phenotyping v2
- 83 (Polyphen-2) (http://genetics.bwh.harvard.edu/pph2./), and MutationTaster
- 84 (http://MutationTaster.org/).
- 85 In particular, the focus was on five CdLS genes (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) and
- 86 10 CdLS-like genes (AFF4, ANKRD11, ARID1B, BRD4, EP300, ESPL1, KMT2A, PDGFRB,
- 87 SETD5, and TAF6). Candidate variants were validated by Sanger sequencing. Additionally, de novo
- 88 occurrences were validated when parental samples were available. Parentage was confirmed by
- analyzing 12 microsatellite markers with Gene Mapper software v4.1.1 (Life Technologies Inc.,
- 90 Carlsbad, CA, USA). The WES performance is summarized in Supplementary Information (Table

- 91 S2).
- 92

93	Real-time reverse transcription PCR
94	To detect aberrant transcripts caused by splice site mutations, reverse transcription PCR (RT-PCR)
95	was performed using total RNA extracted from patient derived lymphoblastoid cell lines. Total RNA
96	was extracted using the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) and reverse-transcribed
97	into cDNA using the Super Script First Strand Synthesis System (Takara, Kyoto, Japan). Resultant
98	cDNA was used as a template for PCR. PCR amplicons were subjected to Sanger sequencing and
99	aberrant transcripts were characterized. For RT-PCR analysis of NIPBL, the forward and reverse
100	primers were: 5'-GAACACTTCAGTTGCTGCAAA-3' and
101	5'-CGTTTCCTAGAGGATTCAAAAGC-3' in Patient 15 with c.3121+1G>A, and
102	5'-TCATCCAGTTCAGTGTGTGC-3' and 5'-TCTCAATGACCCTGAAGTGC-3' in Patient 28 with
103	c.7410+4A>G.
104	
105	WES-based CNV analysis
106	Using WES data, CNVs were analyzed by two algorithms: the eXome Hidden Markov Model
107	(XHMM), and a program based on relative depth of coverage ratio, developed by Nord <i>et al.</i> (Nord

108 program).^{16, 17} For genome-wide screening, XHMM data were first examined in each patient. If

109	causative CNVs were	detected using	XHMM, altered	copy numbers of	of such regions were further
-----	---------------------	----------------	---------------	-----------------	------------------------------

- 110 verified using the Nord program. In addition, CNVs at five CdLS genes and 10 CdLS-like genes (see
- 111 WES section above) were tested by the Nord program.

112

- 113 Quantitative polymerase chain reaction
- 114 Candidate CNVs were validated by quantitative polymerase chain reaction (qPCR). Real-time qPCR
- 115 was performed to examine genomic DNA copy number at *NIPBL*, *C5orf42*, *MED13L*, *SMARCA2*,
- 116 FREM1, and EHMT1 target loci. QuantiFast SYBER Green PCR kit (Qiagen) was used for real-time
- 117 quantification with amplification monitored on a Rotor-Gene Q real-time PCR cycler (Qiagen).
- 118 Relative ratios of genomic DNA copy number were calculated using the standard curve method with
- 119 Rotor-Gene 6000 Series Software 1.7 (Qiagen) by normalizing with autosomal internal control loci
- 120 (STXBP1 and/or FBN1) and also compared to an unrelated control individual. Information of all
- 121 primers is available on request.
- 122
- 123 **RESULTS**
- 124 Flowchart of this study
- 125 A flowchart of this study is shown in Figure 1. Because of the genetic and clinical heterogeneity of
- 126 CdLS, we directly employed WES to effectively screen pathogenic variants in patients with

127	clinically suspected CdLS. To detect variants in CdLS, CdLS-like, or other possible genes, all 57
128	patients were analyzed based on autosomal dominant (de novo), autosomal recessive, and X-linked
129	modes of inheritance. Based on American College of Medical Genetics and Genomics (ACMG)
130	guidelines ¹⁸ , we identified 29 pathogenic or likely pathogenic SNVs in two CdLS genes (<i>NIPBL</i> and
131	SMC1A) and four CdLS-like genes (ANKRD11, EP300, KMT2A, and SETD5) (Figure 1). WES-
132	based CNV analysis in 28 SNV-negative patients detected pathogenic CNVs in four patients (4/57
133	[7.0%]), involving NIPBL, MED13L, EHMT1, and 9q deletion (Figure 1). The remaining 24 cases
134	had neither pathogenic SNVs nor CNVs. Consequently, these cases were subjected to trio-based
135	analysis, except for two cases whose parental samples were unavailable. We detected three
136	pathogenic variants in genes associated with diseases other than CdLS and CdLS-like: ZMYND11,
137	MED13L, and PHIP. Altogether, if all abnormalities were included, we identified pathogenic or
138	likely pathogenic variants in 36 out of 57 cases (63.2%) (Figure 1). Thirty-one of 36 variants
139	occurred de novo, unless biological parental samples were unavailable. One variant was inherited
140	from a mosaic mother (Patient 53). Twenty-three of 32 pathogenic SNVs were novel (Table 1).
141	
142	Pathogenic SNVs in CdLS genes

- 143 We detected 22 pathogenic SNVs in *NIPBL* (22/57 [38.6%]) and two in *SMC1A* (2/57 [3.5%]) (Table
- 144 1 and Figure 1). Among 22 *NIPBL* SNVs, 14 were novel. Meanwhile, NM_0133433.3:c.6893G>A,

145	p.Arg2298His	was repeatedly	detected (P	atients 2 and	d 50). Three	splice site	variants in	NIPBL
	1 0	1 /	· · · · · · · · · · · · · · · · · · ·		/	1		

146 (NM 0133433.3:c.3121+1G>A, c./410+4A>G, and c.5329-15A>G) were detected in Patie
--

- 147 28, and 54, respectively. These variants were previously described, and only c.5329-15A>G was
- 148 shown to result in abnormal splicing.¹⁹⁻²¹ The other c.3121+1G>A and c.7410+4A>G mutations
- 149 were never examined at cDNA level.¹⁹⁻²¹ Therefore, by RT-PCR using cDNA derived from
- 150 lymphoblastoid cells, we confirmed aberrant splicing in both Patient 15, with c.3121+1G>A, and
- 151 Patient 28, with c.7410+4A>G (Figure S1). Regarding the two missense variants in *SMC1A*,
- 152 NM_006306.3:c.1152C>G, p.Lys362Asn was novel.
- 153

154 Pathogenic SNVs in CdLS-like genes

- 155 We also detected pathogenic variants in four CdLS-like genes: ANKRD11 (2/57 [3.5%]), EP300
- 156 (1/57 [1.8%]), *KMT2A* (1/57 [1.8%]), and *SETD5* (1/57 [1.8%]) (Table 1 and Figure 1), whose
- 157 pathogenic variants are known to cause KBG syndrome (MIM #148050), Rubinstein–Taybi
- 158 syndrome 2 (MIM #613684), Wiedemann–Steiner syndrome (MIM #605130), and mental
- 159 retardation autosomal dominant 23 (MIM #615761), respectively. These disorders all share
- 160 overlapping clinical features with CdLS. All five variants were novel, occurring *de novo* except for
- 161 an EP300 variant, which was due to unavailable parental samples. According to the ACMG
- 162 guideline, the *EP300* variant can be classified as likely pathogenic since it is protein length changing

163	mutation due to in-frame deletion (PM4), it is absent from control (including the ExAC, NHLBI, and
164	gnomAD [https://gnomad.broadinstitute.org/]) (PM2), it is predicted to be deleterious by PROVEAN
165	[http://provean.jcvi.org/seq_submit.php] and CADD [https://cadd.gs.washington.edu/] with a score
166	of 23.6 and 21.1, respectively (PP3), and the phenotype of patient is considered reasonable as
167	Cornelia de Lange syndrome-like (PP4).
168	
169	Pathogenic CNVs
170	Using the XHMM and Nord program, we detected four pathogenic CNVs in four patients (Table 1
171	and Figure 1). These were confirmed by qPCR. Patient 9 has a 94-kb deletion at 5p13.2,
172	encompassing exons 22 to 47 of NIPBL and the last exon of C5orf42 (Figure S2a). Partial deletions
173	of NIPBL have been reported in patients with CdLS, and NIPBL haploinsufficiency is apparently
174	deleterious. ²² Patient 34 has a 4.2-Mb deletion at 12q24.1-q24.23, which contains 40 genes including
175	the entire <i>MED13L</i> gene (Figure S2b). Patient 51 has a 14.1-Mb deletion at 9p24.3-p22.3, involving
176	44 genes and an adjacent 571-kb duplication at 9p22.3, altogether encompassing four genes (Figure
177	S2c). Patient 52 has a 774-kb deletion at 9q34.3, containing 14 genes including the entire <i>EHMT1</i>
178	gene (Figure S2d).
179	

180 Variants in genes associated with diseases other than CdLS and CdLS-like

181 By trio-based analysis, we identified pathogenic or likely pathogenic variants in ZMYND11, MED13L,

A novel ZMYND 11 frameshift variant (NM_006624.5:c.1438delG, p.Asp480Thrfs*3) was detected

182 and *PHIP*. These variants are involved in other diseases, but never CdLS or CdLS-like.

- in Patient 53, who had typical CdLS features including left hand oligodactyly (Tables 1 and S1, and
 Figure 2a–e). Based on apparent double sequences implying low mutant allele peaks in the
 electropherogram of the mother, maternal mosaicism of this variant was examined (Figure S3). Deep
 sequencing of PCR products encompassing the maternal variant confirmed mosaicism
 (mutant/mutant+wild-type reads = 2835/27596 [10.3%)]), while Patient 53 showed heterozygosity
 (mutant/mutant+wild-type reads = 12514/27211 [46.0%]) (Table S3). By TA cloning of PCR products
 spanning the maternal variant, wild-type and mutant alleles were clearly recognized by Sanger
- 191 sequencing (Figure S3), yet the mother had no CdLS-like features. *ZMYND11* has been reported as a

critical gene for 10p15.3 microdeletion syndrome, including neurodevelopmental disorder,

- 193 characteristic dysmorphic features, and other more frequent symptoms, such as behavioral
- 194 disturbances, hypotonia, seizures, low birth weight, short stature, genitourinary malformations, and
- 195 recurrent infections.²³

183

192

A novel *MED13L* missense mutation, NM_015335.4:c.6485C>A, p.Thr2162Lys was detected in
Patient 5 (Table S4). *MED13L* variants cause distinctive dysmorphic features and mental retardation
with or without cardiac defects (MIM #608771), known as *MED13L* haploinsufficiency syndrome.²⁴

199	The missense variant identified here is novel, but another variant at the same nucleotide position was
200	previously identified, which leads to a different amino acid substitution (NM_015335.4:c.6485C>T,
201	p.Thr2162Met). ²⁵ Of note, we also detected a 4.2-Mb deletion involving <i>MED13L</i> in Patient 34
202	(Table S4 and Figure S2b). Further, a novel PHIP missense mutation (NM_017934.7:c.1156G>A,
203	p.Asp386Asn) was detected in Patient 56. PHIP haploinsufficiency causes dysmorphic CdLS-like
204	features, developmental delay, intellectual disability, and obesity. ²⁶
205	In the remaining 21 undetermined families, NM_025146.4:c.93C>G, p.Tyr31* in NAA50 (encoding
206	N-alpha-acetyltransferase 50) attracted our attention because it encodes a cohesin complex
207	component (see Discussion). NAA50 variants have not previously been described.
208	
209	Clinical evaluation of CdLS patients using a new scoring system
210	Of the 57 patients with CdLS, their clinical features were re-evaluated based on the clinical scoring
211	system reported by Kline et al. ⁶ With this scoring system, clinical features of clinically suspected
212	CdLS are classified as cardinal (2 points each if presented) and suggestive (1 point each if
213	presented). Clinical scores \geq 11, 10 or 9, 8–4, and < 4 points, are classified as: classic CdLS, non-
214	classic CdLS, sufficiently suspected to warrant molecular testing for CdLS, and insufficient
215	indication for CdLS molecular testing, respectively. All 57 patients were classified using the above
216	clinical scoring system (Table S1 and Figure 3). Twenty-five patients were categorized as classic

14

217	CdLS, 17 patients as non-classic CdLS, and 15 patients as sufficiently suspected to warrant
218	molecular testing for CdLS. No patients were insufficient to indicate molecular testing. The
219	proportion of <i>NIPBL</i> variants was 60% (15/25), 35.3% (6/17), and 13.3% (2/15) in each class,
220	respectively. Ratios of NIPBL variants were compared between two of three classes, with a
221	significant difference recognized only between classic CdLS and sufficiently suspected to warrant
222	molecular testing for CdLS (χ^2 test, $p < 0.05$) (Figure 3). <i>NIPBL</i> variants in classic CdLS were more
223	frequent than sufficiently suspected to warrant molecular testing for CdLS.
224	Interestingly, Patient 53 with a ZMYND11 frameshift variant showed classic CdLS (15 points) with
225	oligodactyly (Figure 2a-e). Therefore ZMYND11 could be included as a CdLS or CdLS-like genes,
226	although ZMYND11 variants have not been reported in CdLS. Patients 5 (SNV) and 34 (CNV) with
227	MED13L abnormality showed clinical scores of 8 and 9 points, respectively, and were consequently
228	classified as sufficiently suspected to warrant molecular testing for CdLS and non-classic CdLS
229	(Figure 2f-h, i-l). Patient 56 with a missense variant in <i>PHIP</i> showed CdLS-like features (6 points),
230	including synophrys, long curly eyelashes, anteverted nostrilis, and depressed nasal bridge, although
231	obesity was retrospectively inconsistent with CdLS (Figure 2m-p). This clinical information is
232	summarized in Table S1.

DISCUSSION

235	Using WES, we identified pathogenic variants in 36 out of 57 (63.2%) patients with clinically
236	suspected CdLS. The diagnostic yield was comparatively higher than previous studies (40-60%) as
237	previous studies used panel or Sanger sequencing of only major CdLS genes. ²⁷⁻³⁰ Advantages of
238	WES are clearly indicated here as CdLS and CdLS-like patients are genetically and clinically
239	heterogeneous. Using a large clinical exome sequencing cohort, a recent genotype-driven approach
240	of cohesinopathy also emphasized the utility of clinical exome sequencing to provide molecular
241	diagnoses for cohesinopathies with extensive genetic and phenotypic heterogeneity, as well as to
242	detecting mosaic variants in patients. ¹² We detected no mosaicism variants in our patients, although
243	it may be difficult to detect extremely low prevalence mosaic variants by WES.
244	Based on recent clinical scores, ⁶ <i>NIPBL</i> variants are more likely to be found in classic CdLS.
245	Moreover, we detected a ZMYND11 frameshift variant, NM_006624.5:c.1438delG,
246	p.Asp480Thrfs*3 in Patient 53 with classic CdLS. ZMYND11 (also known as BS69) contains a
247	tandem "reader" module of histone modifications, which recognizes and binds histone H3.3
248	trimethylated at Lys-36 (H3.3K36me3). Subsequently, this recruits histone demethylases, histone
249	deacetylases, and the SWI/SNF chromatin-remodeling complex to reset chromatin to a relatively
250	repressive state and prevent further transcription. ^{31, 32} Except for ZMYND11, all pathogenic variants
251	in genes for diseases other than CdLS and CdLS-like (MED13L and PHIP) were detected in patients
252	with scores < 9 .

253	We found two patients with MED13L abnormality and one patient with a PHIP variant. MED13 is a
254	subunit of the cyclin-dependent kinase 8 (CDK8) module comprised of reversible association of four
255	subunits: cyclin C, CDK8, mediator complex subunit (MED)12/MED12L, and MED13/MED13L. The
256	module binds the mediator complex to regulate its activity. The mediator complex bridges between
257	gene-specific activators bound to regulatory elements and general transcription machinery comprising
258	RNA polymerase II and general transcription factors. ^{33, 34} PHIP is a H3K4 methylation-binding protein
259	that interacts with chromatin modifications associated with promoters and transcriptional cis-
260	regulatory elements. ³⁵ Interestingly, ZMYND11, MED13L, and PHIP are all core components of
261	transcriptional regulatory pathways. Recently, CdLS and CdLS-like disorders were reported not only
262	as cohesinopathies but also as "transcriptomopathies". ¹⁵ Actually, AFF4, ANKRD11, ARID1B, BRD4,
263	EP300, KMT2A, SETD5, and TAF6 have been found in patients with several clinical features
264	overlapping with CdLS, and are related to epigenetic modification, chromatin remodeling, and
265	transcriptional regulation pathway ^{8, 15, 36, 37} (Table S5). Interactive networks of 18 genes associated
266	with CdLS and CdLS-like features were analyzed using GeneMANIA (https://genemania.org/), which
267	covers physical interactions, pathways, and shared protein domains (Figure 4). As expected, genes
268	encoding cohesion complex and its regulatory factors (NIBPL, SMC1A, SMC3, HDAC8, RAD21, and
269	ESPL1) strongly interact with each other. ZMYND11 and PHIP share protein domains with other genes
270	encoding histone modification factors and transcriptional regulation factors. MED13L shares a

271	common pathway with $EP300$, and is involved in regulation of RNA polymerase II. HIF1A is a
272	hypoxia inducible factor subunit that induces recruitment of CDK8-mediator complex and p300
273	(encoding EP300) for histone acetyltransferase to stimulate RNA polymerase II elongation. ³⁸ These
274	functional links in three genes (ZMYND11, PHIP, and MED13L) may be related to CdLS-like features.
275	Patient 51 has a 14.1-Mb deletion at 9p24.3-p22.3 (involving 44 RefSeq genes) adjacent to a 571-kb
276	duplication at 9p22.3, containing four genes (Figure S2c). Critical genes of 9p deletion syndrome
277	include DMRT (DMRT1, DMRT2, and DMRT3 cluster) for gonadal dysgenesis from complete sex
278	reversal to milder phenotypes in 46,XY patients, ³⁹ FREM1 for craniosynostosis including
279	trigonocephaly,40 and DOCK8, KANK1, SLC1A1, and GLDC for developmental delay and
280	neurological disorders. ⁴¹ Trigonocephaly is one of the major features of 9p deletion syndrome, but
281	absent in our patient. Trigonocephaly was previously mapped to a critical 4.7-Mb region at 9p22.2-
282	p23, including <i>FREM1</i> and <i>CER1</i> . ⁴² Interestingly, our patient has a duplication of this critical region,
283	and instead of trigonocephaly, exhibited delayed closure of the anterior fontanelle at 3 years of age
284	Thus, it is conceivable that FREM1 and/or CER1 are potentially dosage sensitive genes related to
285	cranial bone development and closure. In addition, SMARCA2 was included in the deletion region.
286	SMARCA2 is a known causative gene for Nicolaides–Baraitser syndrome (MIM #601358), which shares
287	several CdLS features. ⁴³ To date, 78 variants are registered in the Human Gene Mutation Database (HGMD)
288	V.2019.1, but no truncating variants. SMARCA2 variants are predicted to act in a dominant-negative or

289

gain-of-function manner rather than haploinsufficiency. Indeed, it has been suggested that SMARCA2 might

290 not be a critical gene for 9p deletion syndrome.

291 Patient 52 has a 773.8-kb deletion at 9q34.3, which contains 14 genes including *EHMT1*. Intragenic

- *EHMT1* variants or submicroscopic 9q34.3 deletion causes Kleefstra syndrome with distinct facial
 features, hypotonia, developmental delay, and intellectual disability.⁴⁴ *EHMT1* encodes a histone H3
 Lys-9 methyltransferase and is consequently involved in chromatin remodeling.⁴⁵ Similar to patients
- with CdLS, our patient showed dysmorphic features, including synophrys, long curly eyelashes, and
- depressed nasal bridge, but no limb abnormalities (Figure 2u–w). Clinical score was 5 points,
 suggesting that the patient is likely compatible with Kleefstra syndrome rather than CdLS. Nonetheless,
- 298 it is sometimes difficult to clearly differentiate these two disorders.
- In 21 undetermined families, a *de novo* nonsense variant (NM_025146.4:c.93C>G, p.Tyr319*) was

detected in *NAA50* in Patient 19 with classic CdLS features (12 points). The variant was confirmed by

- 301 Sanger sequencing. This variant was not registered in control population databases (ExAC and
- 302 gnomAD). According to ExAC, probability of loss-of-function intolerance (pLI) score of 0.88 suggest
- 303 intolerance to loss-of-function variant. To date, no variants are registered in HGMD V.2019.1. NAA50
- 304 encodes a N-terminal acetyltransferase required for chromosome segregation during mitosis. It has
- 305 been reported that NAA50 is required for sister chromatid cohesion during Drosophila wing
- 306 development, and most likely regulates correct interaction between the cohesin subunits, RAD21 and

307	7 SMC3.46	These findings	support that	NAA50 truncat	ion variants may	y cause the candidate	variants of
		0	11				

308 CdLS. Further studies of NAA50 variants in patients with CdLS are necessary.

- 309 In conclusion, we have achieved a high genetic diagnosis rate of 63.2% by WES in patients with
- 310 clinically diagnosed CdLS. Moreover, we have newly detected ZMYND11, MED13L, and PHIP
- 311 variants potentially linked to CdLS or CdLS-like through abnormality of transcriptional regulation
- 312 together with NAA50 variant.
- 313

314 Acknowledgments

315 We would like to thank the patients and their families, and especially the Brazilian Association of

- 316 Cornelia de Lange Syndrome (CdLS Brazil) for participating in this study. We also thank N. Watanabe,
- 317 T. Miyama, M. Sato, S. Sugimoto, and K. Takabe for their technical assistance. This work was
- 318 supported by Japan Agency for Medical Research and Development (AMED) under grant numbers
- 319 JP18ek0109280, JP18dm0107090, JP18ek0109301, JP18ek0109348, and JP18kk0205001; by Japan
- 320 Society for the Promotion of Science (JSPS) KAKENHI under grant numbers JP17H01539,
- 321 JP16H05357, JP16H06254, JP17K16132, JP17K10080, JP17K15630, and JP17H06994; by the
- 322 Ministry of Health, Labour, and Welfare; and by the Takeda Science Foundation. We thank Sarah
- 323 Williams, PhD, from Edanz Group (www.edanzediting.com) for editing a draft of this manuscript.
- 324
- 325 Supplementary information is available at Journal of human genetics's website.

326 **References**

327 3281. Nizon, M., Henry, M., Michot, C., Baumann, C., Bazin, A., Bessieres, B. et al. A 329 series of 38 novel germline and somatic mutations of NIPBL in Cornelia de Lange 330 syndrome. Clinical Genetics. 2016;89:584-89. 3312.Mannini, L., Cucco, F., Quarantotti, V., Krantz, I.D., Musio, A. Mutation spectrum 332and genotype-phenotype correlation in Cornelia de Lange syndrome. Human 333 Mutation. 2013;34:1589-96. 3343. Bhuiyan, Z.A., Klein, M., Hammond, P., van Haeringen, A., Mannens, M.M., Van 335 Berckelaer-Onnes, I. et al. Genotype-phenotype correlations of 39 patients with 336 Cornelia De Lange syndrome: the Dutch experience. Journal of Medical Genetics. 337 2006;43:568-75. 338 4. Bedoukian, E., Copenheaver, D., Bale, S., Deardorff, M. Bohring-Opitz syndrome 339caused by an ASXL1 mutation inherited from a germline mosaic mother. American 340 Journal of Medical Genetics. Part A. 2018;176:1249-52. 3415. McInernev-Leo, A.M., Harris, J.E., Gattas, M., Peach, E.E., Sinnott, S., Dudding-342Byth, T. et al. Fryns Syndrome Associated with Recessive Mutations in PIGN in two 343Separate Families. Human Mutation. 2016;37:695-702. 3446. Kline, A.D., Moss, J.F., Selicorni, A., Bisgaard, A.M., Deardorff, M.A., Gillett, P.M. et al. Diagnosis and management of Cornelia de Lange syndrome: first international 345346 consensus statement. Nature Reviews Genetics. 2018;19:649-66. 3477. Parenti, I., Teresa-Rodrigo, M.E., Pozojevic, J., Ruiz Gil, S., Bader, I., Braunholz, D. 348 et al. Mutations in chromatin regulators functionally link Cornelia de Lange 349 syndrome and clinically overlapping phenotypes. Human Genetics. 2017;136:307-35020.351Olley, G., Ansari, M., Bengani, H., Grimes, G.R., Rhodes, J., von Kriegsheim, A. et 8. 352al. BRD4 interacts with NIPBL and BRD4 is mutated in a Cornelia de Lange-like 353 syndrome. Nature Genetics. 2018;50:329-32. Ansari, M., Poke, G., Ferry, Q., Williamson, K., Aldridge, R., Meynert, A.M. et al. 3549. 355Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like 356 phenotypes with observed and predicted levels of mosaicism. Journal of Medical 357 Genetics. 2014;51:659-68. 358 10. Yavarna, T., Al-Dewik, N., Al-Mureikhi, M., Ali, R., Al-Mesaifri, F., Mahmoud, L. et 359al. High diagnostic yield of clinical exome sequencing in Middle Eastern patients 360 with Mendelian disorders. Human Genetics. 2015;134:967-80. 36111. Muto, A., Schilling, T.F. Zebrafish as a Model to Study Cohesin and

362		Cohesinopathies. In: Methods in Molecular Biology. Clifton, N.J; 2017. p. 177–196.
363	12.	Yuan, B., Neira, J., Pehlivan, D., Santiago-Sim, T., Song, X., Rosenfeld, J. et al.
364		Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of
365		cohesinopathies. Genetics in Medicine: Official Journal of the American College of
366		Medical Genetics. 2019;3:663-75.
367	13.	Izumi, K., Nakato, R., Zhang, Z., Edmondson, A.C., Noon, S., Dulik, M.C. et al.
368		Germline gain-of-function mutations in AFF4 cause a developmental syndrome
369		functionally linking the super elongation complex and cohesin. Nature Genetics.
370		2015;47:338-44.
371	14.	Woods, S.A., Robinson, H.B., Kohler, L.J., Agamanolis, D., Sterbenz, G., Khalifa, M.
372		Exome sequencing identifies a novel EP300 frame shift mutation in a patient with
373		features that overlap Cornelia de Lange syndrome. American Journal of Medical
374		Genetics. Part A. 2014;164a:251–58.
375	15.	Yuan, B., Pehlivan, D., Karaca, E., Patel, N., Charng, W.L., Gambin, T. et al. Global
376		transcriptional disturbances underlie Cornelia de Lange syndrome and related
377		phenotypes. The Journal of Clinical Investigation. 2015;125:636–51.
378	16.	Fromer, M., Moran, J.L., Chambert, K., Banks, E., Bergen, S.E., Ruderfer, D.M. et
379		al. Discovery and statistical genotyping of copy-number variation from whole-exome
380		sequencing depth. American Journal of Human Genetics. 2012;91:597–607.
381	17.	Nord, A.S., Lee, M., King, M.C., Walsh, T. Accurate and exact CNV identification
382		from targeted high-throughput sequence data. BMC Genomics. 2011;12:184.
383	18.	Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J. et al. Standards
384		and guidelines for the interpretation of sequence variants: a joint consensus
385		recommendation of the American College of Medical Genetics and Genomics and the
386		Association for Molecular Pathology. Genetics in medicine : official journal of the
387		American College of Medical Genetics. 2015;17:405-24.
388	19.	Selicorni, A., Russo, S., Gervasini, C., Castronovo, P., Milani, D., Cavalleri, F. et al.
389		Clinical score of 62 Italian patients with Cornelia de Lange syndrome and
390		correlations with the presence and type of NIPBL mutation. Clinical Genetics.
391		2007;72:98–108.
392	20.	Gillis, L.A., McCallum, J., Kaur, M., DeScipio, C., Yaeger, D., Mariani, A. et al.
393		NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome
394		and evaluation of genotype-phenotype correlations. American Journal of Human
395		Genetics. 2004;75:610–23.
396	21.	Teresa-Rodrigo, M.E., Eckhold, J., Puisac, B., Pozojevic, J., Parenti, I., Baquero-
397		Montoya, C. et al. Identification and Functional Characterization of Two Intronic

398		NIPBL Mutations in Two Patients with Cornelia de Lange Syndrome. BioMed
399		Research International. 2016;8742939.
400	22.	Cheng, Y.W., Tan, C.A., Minor, A., Arndt, K., Wysinger, L., Grange, D.K. et al. Copy
401		number analysis of NIPBL in a cohort of 510 patients reveals rare copy number
402		variants and a mosaic deletion. Molecular Genetics & Genomic Medicine.
403		2014;2:115–23.
404	23.	Tumiene, B., Ciuladaite, Z., Preiksaitiene, E., Mameniskiene, R., Utkus, A.,
405		Kucinskas, V. Phenotype comparison confirms ZMYND11 as a critical gene for
406		10p15.3 microdeletion syndrome. Journal of Applied Genetics. 2017;58:467–74.
407	24.	Smol, T., Petit, F., Piton, A., Keren, B., Sanlaville, D., Afenjar, A. et al. MED13L-
408		related intellectual disability: involvement of missense variants and delineation of
409		the phenotype. Neurogenetics. 2018;19:93–103.
410	25.	Bowling, K.M., Thompson, M.L., Amaral, M.D., Finnila, C.R., Hiatt, S.M., Engel,
411		K.L. et al. Genomic diagnosis for children with intellectual disability and/or
412		developmental delay. Genome Medicine. 2017;9:43.
413	26.	Jansen, S., Hoischen, A., Coe, B.P., Carvill, G.L., Van Esch, H., Bosch, D.G.M. et al.
414		A genotype-first approach identifies an intellectual disability-overweight syndrome
415		caused by PHIP haploinsufficiency. European Journal of Human Genetics.
416		2018;26:54-63.
417	27.	Mariani, M., Decimi, V., Bettini, L.R., Maitz, S., Gervasini, C., Masciadri, M. et al.
418		Adolescents and adults affected by Cornelia de Lange syndrome: A report of 73
419		Italian patients. American Journal of Medical Genetics. Part C, Seminars in
420		Medical Genetics. 2016;172:206–13.
421	28.	Marchisio, P., Selicorni, A., Bianchini, S., Milani, D., Baggi, E., Cerutti, M. et al.
422		Audiological findings, genotype and clinical severity score in Cornelia de Lange
423		syndrome. International Journal of Pediatric Otorhinolaryngology. 2014;78:1045–
424		48.
425	29.	Hei, M., Gao, X., Wu, L. Clinical and genetic study of 20 patients from China with
426		Cornelia de Lange syndrome. BMC Pediatrics. 2018;18:64.
427	30.	Mehta, D., Vergano, S.A., Deardorff, M., Aggarwal, S., Barot, A., Johnson, D.M. et
428		al. Characterization of limb differences in children with Cornelia de Lange
429		Syndrome. American journal of medical genetics. Part C, Seminars in Medical
430		Genetics. 2016;172:155–62.
431	31.	Wen, H., Li, Y., Li, H., Shi, X. ZMYND11 [:] an H3.3-specific reader of H3K36me3.
432		Cell Cycle. 2014;13:2153–54.
433	32.	Wen, H., Li, Y., Xi, Y., Jiang, S., Stratton, S., Peng, D. et al. ZMYND11 links histone

434		H3.3K36me3 to transcription elongation and tumour suppression. Nature.
435		2014:508:263-68.
436	33.	Utami, K.H., Winata, C.L., Hillmer, A.M., Aksoy, I., Long, H.T., Liany, H. et al.
437		Impaired development of neural-crest cell-derived organs and intellectual disability
438		caused by MED13L haploinsufficiency. Human Mutation. 2014;35:1311–20.
439	34.	Miao, Y.L., Gambini, A., Zhang, Y., Padilla-Banks, E., Jefferson, W.N., Bernhardt,
440		M.L. et al. Mediator complex component MED13 regulates zygotic genome
441		activation and is required for postimplantation development in the mouse. Biology
442		of Reproduction. 2018;98:449–64.
443	35.	Morgan, M.A.J., Rickels, R.A., Collings, C.K., He, X., Cao, K., Herz, H.M. et al. A
444		cryptic Tudor domain links BRWD2/PHIP to COMPASS-mediated histone H3K4
445		methylation. Genes & Development. 2017;31:2003–14.
446	36.	Izumi, K. Disorders of Transcriptional Regulation: An Emerging Category of
447		Multiple Malformation Syndromes. Molecular Syndromology. 2016;7:262–73.
448	37.	Ka, M., Kim, W.Y. ANKRD11 associated with intellectual disability and autism
449		regulates dendrite differentiation via the BDNF/TrkB signaling pathway.
450		Neurobiology of Disease. 2018;111:138–52.
451	38.	Galbraith, M.D., Allen, M.A., Bensard, C.L., Wang, X., Schwinn, M.K., Qin, B. et al.
452		HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to
453		hypoxia. Cell. 2013; 153 :1327-39.
454	39.	Onesimo, R., Orteschi, D., Scalzone, M., Rossodivita, A., Nanni, L., Zannoni, G.F. et
455		al. Chromosome 9p deletion syndrome and sex reversal: novel findings and
456		redefinition of the critically deleted regions. American Journal of Medical Genetics.
457		Part A. 2012;158a:2266–71.
458	40.	Vissers, L.E., Cox, T.C., Maga, A.M., Short, K.M., Wiradjaja, F., Janssen, I.M. et al.
459		Heterozygous mutations of FREM1 are associated with an increased risk of isolated
460		metopic craniosynostosis in humans and mice. PLoS Genetics. 2011;7:e1002278.
461	41.	Recalcati, M.P., Bellini, M., Norsa, L., Ballarati, L., Caselli, R., Russo, S. et al.
462		Complex rearrangement involving 9p deletion and duplication in a syndromic
463		patient: genotype/phenotype correlation and review of the literature. Gene.
464		2012;502:40-5.
465	42.	Kawara, H., Yamamoto, T., Harada, N., Yoshiura, K., Niikawa, N., Nishimura, A. et
466		al. Narrowing candidate region for monosomy 9p syndrome to a 4.7-Mb segment at
467		9p22.2-p23. American Journal of Medical Genetics. Part A. 2006;140:373–77.
468	43.	Sousa, S.B., Hennekam, R.C. Phenotype and genotype in Nicolaides-Baraitser
469		syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical

470		Genetics. 2014;166c:302–14.
471	44.	Willemsen, M.H., Vulto-van Silfhout, A.T., Nillesen, W.M., Wissink-Lindhout, W.M.,
472		van Bokhoven, H., Philip, N. et al. Update on Kleefstra Syndrome. Molecular
473		Syndromology. 2012;2:202–12.
474	45.	Iacono, G., Dubos, A., Meziane, H., Benevento, M., Habibi, E., Mandoli, A. et al.
475		Increased H3K9 methylation and impaired expression of Protocadherins are
476		associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids
477		Research. 2018;46:4950–65.
478	46.	Ribeiro, A.L., Silva, R.D., Foyn, H., Tiago, M.N., Rathore, O.S., Arnesen, T. et al.
479		Naa50/San-dependent N-terminal acetylation of Scc1 is potentially important for
480		sister chromatid cohesion. Scientific Reports. 2016;6:39118.
481	47.	Gillis, L.A., McCallum, J., Kaur, M., DeScipio, C., Yaeger, D., Mariani, A. et al.
482		NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome
483		and evaluation of genotype-phenotype correlations. American journal of human
484		genetics. 2004;75:610-23.
485	48.	Oliveira, J., Dias, C., Redeker, E., Costa, E., Silva, J., Reis Lima, M. et al.
486		Development of NIPBL locus-specific database using LOVD: from novel mutations
487		to further genotype-phenotype correlations in Cornelia de Lange Syndrome. Human
488		mutation. 2010;31:1216-22.
489	49.	Deardorff, M.A., Kaur, M., Yaeger, D., Rampuria, A., Korolev, S., Pie, J. et al.
490		Mutations in cohesin complex members $\mathrm{SMC3}$ and $\mathrm{SMC1A}$ cause a mild variant of
491		cornelia de Lange syndrome with predominant mental retardation. American
492		journal of human genetics. 2007;80:485-94.
493		

494 **Titles and legends to figures**

- 495 **Figure 1**. Flowchart of this study.
- 496 All the 57 patients with clinically suspected CdLS were analyzed by whole exome sequencing
- 497 (WES). Twenty-nine patients had pathogenic single nucleotide variants (SNVs) in two CdLS genes
- 498 (NIPBL and SMC1A) and four CdLS-like genes (ANKRD11, EP300, KMT2A, and SETD5). WES-
- 499 based copy number variation (CNV) analysis in patients with no causative SNVs identified
- 500 pathogenic CNVs in four patients. The remaining 24 patients with neither pathogenic SNVs nor
- 501 CNVs were subjected to trio-based analysis, except for two cases whose parental samples were
- 502 unavailable. Three causative variants were identified in ZMYND11, MED13L, and PHIP. Diagnostic
- 503 yield was 63.2 % (36/57) when all 32 SNVs (32/57 [56.1%]) and four CNVs (4/57 [7.0%]) were
- 504 included. A novel candidate variant was detected in NAA50.

505

506 Figure 2. Clinical photographs of individuals with ZMYND11, MED13L, and PHIP

abnormalities. (a–e) Photos of Patient 53 with a *ZMYND11* frameshift mutation. (a, b) Facial

- 508 features include microcephaly, synophrys, highly arched eyebrows, long curly eyelashes, low set
- 509 ears, anteverted nasal nostrilis, long philtrum, thin upper lip, downturned corners of the mouth, and
- 510 micrognathia. (c) Note left hand oligodactyly (only one finger). (d, e) Right hand and bilateral feet.
- 511 Right hand shows abnormal palmer crease. Feet show no abnormalities. (f-h) Facial photos of

512	Patient 5 with a <i>MED13L</i> missense mutation at (f) 3 months and (g) 18 years. (h) Broad forehead,
513	synophrys, long curly eyelashes, low set ears, anteverted nasal bridge, and full cheeks are seen at 23
514	years. (i–l) Clinical features of Patient 34 with a 4.2-Mb deletion involving <i>MED13L</i> . (i) Note
515	synophrys, arched eyebrows, upslanting palpebral fissures, long curly eyelashes, low set ears,
516	anteverted nasal bridge, and bulbous nasal tip. (j) Hirsutism in the back. (k, l) Bilateral hands and
517	feet. Hands show clinodactyly of the fifth finger. Feet show no abnormalities. (m-p) Photos of
518	Patient 56 with a PHIP missense mutation. (m) Facial features include macrocephaly, synophrys,
519	long curly eyelashes, anteverted nasal nostrilis, depressed nasal bridge, and short neck. (n) Full
520	whole body view with obesity at 11 years (weight, 82.5 kg [> 95 percentile]; height, 157.5 cm [> 95
521	percentile]; occipital frontal circumference, 58 cm [> 98 percentile]). (o, p) Hands and feet were
522	normal. (q-t) Photos of Patient 51 with a 4.1-Mb deletion at 9p24.3-p22.3 adjacent to a 571-kb
523	duplication at 9p22.3. (q, r) Facial features include synophrys, upslanting palpebral fissures,
524	anteverted nostrilis, and long philtrum. (s, t) Hands were normal. (u-w) Phenotype of Patient 52 with
525	a 773.8-kb deletion at 9q34.3. (u) Facial features include synophrys, long curly eyelashes, and
526	depressed nasal bridge. (v, w) Hands and feet were normal.
527	
528	Figure 3. Classification of 57 CdLS patients by clinical score. All patients were classified based

529 on clinical score. Scores of ≥ 11 , 10 or 9, 8–4, and < 4 enabled categorization of four classes: classic

530	CdLS, non-classic CdLS, sufficiently suspected to warrant molecular testing for CdLS indicated, and
531	insufficient to indicate molecular testing for CdLS. The 57 patients were classified to classic CdLS
532	(N = 25), non-classic CdLS ($N = 17$), and sufficiently suspected to warrant molecular testing for
533	CdLS indicated ($N = 15$). The number of individuals with variants are indicated in rows of genes.
534	
535	Figure 4. Schematic presentation of interacting networks of mutated genes in CdLS and CdLS-
536	like. Interactive gene networks of mutated genes with CdLS and CdLS-like features. Three networks
537	are highlighted using GeneMANIA (https://genemania.org/), based on physical interactions (red line),
538	connecting pathways (blue line), and shared protein domains (green line).
539	

Figure 3

Figure 4

Gene	HGMD accession	Patient	Variant type	Mutation (hg 19)	Protein	Inheritance	Prediction scores		Control database			Novelty	
							SIFT	Polyphen2	Mutation taster	ESP6500	ExAC	575 in-house	
		2	missense	c.6893G>A	p.Arg2298His	de novo	D	D	D	-	-	0	Reported [47]
2		3	nonsense	c.6179dup	p.His2060Glnfs*4	de novo	-	-	-	-	-	0	Novel
*		4	missense	c.7699T>G	p.Tyr2567Asp	de novo	D	D	D	-	-	0	Novel
		7	missense	c.5595G>T	p.Arg1865Ser	unavailable	D	D	D	-	-	0	Novel
		8	missense	c.6620T>C	p.Met2207Thr	de novo	D	D	D	-	-	0	Novel
		9	CNV	93.9-Kb deletion	-	not confirmed	-	-	D	-	-	-	Novel
*		10	frameshift	c.5174delA	p.Lys1725Serfs*17	unavailable	-	-	D	-	-	0	Novel
*		13	frameshift	c.2479_2480delAG	p.Arg827Glyfs*2	de novo	-	-	D	-	-	0	Reported [47]
*		15	splicing	c.3121+1G>A	-	de novo	-	-	-	-	-	0	Reported [19]
*		17	frameshift	c.1903_1904insA	p.Ser635Tyrfs*3	de novo	-	-	D	-	-	0	Novel
*		25	frameshift	c.5030_5031del	p.Ile1677Serfs*21	de novo	-	-	D	-	-	0	Novel
NIPBL	NM_0133433.3	28	splicing	c.7410+4A>G	-	de novo	-	-	-	-	-	0	Reported [20]
		31	in-frame deletion	c.6653_6655del	p.Asn2218del	de novo	-	-	D	-	-	0	Novel
		36	nonsense	c.5509C>T	p.Arg1837*	de novo	-	-	D	-	-	0	Novel
		38	nonsense	c.826C>T	p.Gln276*	de novo	-	-	D	-	-	0	Reported [48]
2		39	nonsense	c.190C>T	p.Gln64*	de novo	-	-	D	-	-	0	Reported [9]
2		41	missense	c.6343G>T	p.Gln2115Cys	de novo	D	D	D	-	-	0	Novel
2		45	missense	c.6027G>C	p.Leu2009Phe	de novo	D	D	D	-	-	0	Novel
2		48	frameshift	c.8325_8326delinsT	p.Lys2775Asnfs*4	de novo	-	-	D	-	-	0	Novel
*		49	missense	c.6448C>G	p.Leu2150Val	de novo	Т	D	D	-	-	0	Novel
		50	missense	c.6893G>A	p.Arg2298His	de novo	D	D	D	-	-	0	Reported [47]
		54	splicing	c.5329-15A>G	-	de novo	-	-	-	-	-	0	Reported [21]
		55	missense	c.7079G>T	p.Gly2360Val	de novo	D	D	D	-	-	0	Novel
Ch4614		11	missense	c.1152C>G	p.Lys362Asn	de novo	D	D	D	-	-	0	Novel
SIVICIA	11111_000500.5	42	missense	c.1487G>A	p.Arg496His	de novo	D	D	D	-	-	0	Reported [49]
		21	frameshift	c.3255_3256del	p.Lys1086Glufs*15	de novo	-	-	D	-	-	0	Novel
ANKKDII	NM_013275.5	43	nonsense	c.5434C>T	p.Gln1812*	de novo	-	-	D	-	-	0	Novel
EP300	NM_001429.3	6	in-frame deletion	c.7014_7028del	p.His2338_Pro2342del	unavailable	-	-	Р	-	-	0	Novel
KMT2A	NM_001197104.1	27	nonsense	c.3592C>T	p.Gln1198*	de novo	-	-	D	-	-	0	Novel
SETD5	NM_001080517.2	1	nonsense	c.1852C>T	p.Arg618*	de novo	-	-	-	-	-	0	Novel
		5	missense	c.6485C>A	p.Thr2162Lys	de novo	D	D	D	-	-	0	Novel
WEDISL	NIN_015555.4	34	CNV	4.2-Mb deletion	-	de novo	-	-	-	-	-	-	Novel
ZMYND11	NM_006624.5	53	frameshift	c.1438delG	p.Asp480Thrfs*3	maternal (mosaic)	-	-	D	-	-	0	Novel
PHIP	NM_017934.7	56	missense	c.1156G>A	p.Asp386Asn	de novo	D	D	D	-	-	0	Novel
-		51	CNV	9p 14.1-Mb del 571-kb dup	-	de novo	-	-	-	-	-	-	Novel
EHMT1	NM_24757.4	52	CNV	9q 773.8-kb del	-	de novo	-	-	-	-	-	-	Novel
NAA50	NM_025146.4	19	nonsense	c.93C>G	p.Tyr31*	de novo	-	-	-	-	-	-	Novel

Table 1. Pathogenic variants were identified in this study.

SIFT, Sorting Intolerant From Tolerant (http://sift.bii.a-star.edu.sg/); PolyPhen-2, PolymorphismPhenotyping v2 (http://genetics. bwh.harvard.edu/pph2/); MutationTaster (http://www.mutationtaster.org/); ESP6500, National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP) Exome Variant Server (http://evs.gs.washington.edu/EVS/); ExAc browser (http:// exac.broadinstitute.org/); 575 in-house, in-house 575 Japanese control exome dataset

Supplementary Figure S1. Abnormal *NIPBL* **transcripts generated by splice site variants.** Abnormal transcripts were confirmed in (a) Patient 15 with c.3121+1G>A in *NIPBL* and (b) Patient 28 with c.7410+4A>G in *NIPBL*. The upper schematic shows a partial gene structure with the splicing variant. The middle schematic shows the mutant and wild-type cDNA. The lower image shows wild-type and mutant cDNA products in electrophoresed gels. The asterisk (*) indicates aberrant transcripts of 374 bp, generated by exon 10 skipping (a), and 971 bp, generated by exon 43 skipping (b). *ACT1* was used as the control.

a Patient 9

d Patient 52

Supplementary Figure S2. Four patients with pathogenic CNVs detected using WES data. Red squares/bars indicates deletions, and blue squares/bars indicates duplications identified using XHMM and Nord programs. Copy number variations (CNVs) were confirmed by qPCR. (a) Patient 9 had a *de novo* 93.9-kb deletion at 5p13.2 corresponding to exons 22 to 47of *NIPBL* and the last exon of *C5orf42*. *NIPBL* and *C5orf 42* deletion were confirmed by qPCR. (b) Patient 34 possessed a *de novo* 4.2-Mb deletion involving 40 RefSeq genes including *MED13L* at 12q24.1-q24.23. *MED13L* deletion was confirmed by qPCR. (c) Patient 51 had a *de novo* 14.1-Mb deletion at 9p24.3-p22.3 involving 44 RefSeq genes adjacent to a 571-kb duplication at 9p22.3 encompassing four genes. *SMARCA2* deletion and *FREM1* duplication were confirmed by qPCR. (d) Patient 52 showed a *de novo* 773.8-kb deletion at 9q34.3 involving 14 RefSeq genes including *EHMT1*. *EHMT1* deletion was confirmed by qPCR.

Supplementary Figure S3. A frameshift *ZMYND11* **variant in Patient 53 and his mosaic mother with low level mosaicism.** Heterozygous c.1438delG was detected in electropherograms of Patient 53. Double sequences were detected in the maternal electropherogram.By cloning the PCR product in the mother, wild-type and mutant alleles were clearly recognized by Sanger sequencing.

Supplementary Table S1. Pathogenic variants and clinical features in all 57 patients. Please see the separate file. Pathogenic variants and clinical features of CdLS are summarized.

Dationt	Sequenced base(bp)	Maan danth	Covered regions (%)					
Putternt	Sequenced buse(bp)	Mean depth	>5 reads	>10 reads	>20 reads			
1	2,717,491,258	81.19	98.1	97.6	95.9			
2	2,345,160,622	70.06	98.1	97.5	94.9			
3	2,410,547,560	72.02	98.1	97.5	95			
4	2,193,943,963	65.55	98.1	97.3	94.3			
5	2,134,650,052	63.77	98	97.2	93.4			
6	2,278,525,905	68.07	98	97.3	94.7			
7	3,327,143,568	99.4	98.3	98	96.9			
8	2,353,682,334	70.32	98.1	97.5	95			
9	1,956,621,164	58.46	97.9	97	92.7			
10	2,467,364,092	73.71	97.9	97.2	94.1			
11	2,163,878,827	64.65	97.9	96.9	92.7			
12	2.386.979.976	71.31	97.9	97.2	94.2			
13	2.709.790.390	80.96	98.1	97.5	95.2			
14	2.271.433.984	67.86	97.9	97.1	93.6			
15	2.497.750.149	74.62	98	97.3	94.5			
16	2,401,689,900	71.75	98	97.3	94			
17	3 068 833 794	91.68	98.2	97.7	96			
18	2 811 745 691	84	98	97.5	95.4			
19	2 244 406 012	67.05	98	97.2	93.3			
20	2 515 145 707	75 14	98	97.3	94.8			
20	2 304 367 691	68.84	98	97.4	94.5			
21	2,004,007,001	61.9	98	97.7	93.3			
22	2,071,775,470	62.07	98	97.1	93			
23	2,077,555,752	77 22	98	97.5	95.3			
24	2,384,338,871	66.17	97.9	96.9	92.2			
25	2,214,779,528	00.17	97.9	90.9	92.2			
20	2,230,338,803	37.12	98.1	97.7	90			
27	2,388,322,833	77.33	93.1	97.4	94.8			
20	2,017,702,774	98.43	98	97.5	95.8			
20	2 217 645 104	66.25	98	97.5	95.0			
21	2,217,043,104	60.88	97.8	96.5	90.7			
22	2,037,071,035	78.5	97.8	90.5	90.7			
22	1 024 415 550	57.40	98	97.3	01.2			
24	2,324,413,330	91.06	97.9	90.0	91.2			
24 25	2,743,246,439	07.11	97.8	90.7	92.2			
26	2,220,204,092	57.11	90.1	97.7	90.1			
30	2,232,039,420	00.00	90.1	97.5	95.5			
20	2,722,099,721	74.1	50	97.3	95			
30	2,400,200,000	102.25	90	97.5	94.4			
39	2 127 000 022	102.55 62.57	90.2	97.7	90.2			
40	2,127,303,322 2 1 <u>1</u> 0 157 221	63.07	90	97	92. 4 Q2 1			
41	2,140,137,321	03.54 00.75		90.9 07.6	52.1 05 Q			
42	3 052 162 050	00.75	90.1 QQ 1	97.0	95.0 Q5.6			
45	2,032,402,330 2 Q56 710 611	91.19	ΔQ 1	97.0	95.0 Q5 7			
44	2,30,713,011	00.33 20 Q1	00.1	97.0	55.7 Q5 7			
45	2,700,203,123	00.91	90.1	97.5	95.2			
40	2,700,200,201	02.40	70	57.5	C.CC			
47	2,438,746,246	72.80	98	97.3	94.3			
48	2,902,940,061	30./J	98.1	97.6	95.6			
49	3,442,010,124	102.85	98 09.1	97.5	95.5			
50	3,025,730,620	108.32	98.1	97.0	95.8			
51	2,395,445,229	/1.5/	98	97.3	94.5			
52	2,221,757,172	66.38	97.9	9/	93.3			
53	2,226,712,912	66.52	98	97.1	93.4			
54	2,934,068,828	87.66	98.3	97.9	95.4			
55	2,759,645,091	82.45	98.3	97.8	94.9			
56	3,109,737,458	92.91	98.1	97.6	95.6			
57	2,900,351,453	86.65	98.1	97.4	94.5			

Supplementary Table S2. WES performance. Whole exome sequencing (WES) was performed in all 57 patients with suspected CdLS. Mean read depth of protein coding regions ranged from 57.49× to 108.32×, with an average 94.3% of target bases sequenced by 20 or more reads.

		total	G (WT)	Deletion (Mut)		Other sub	stitusions	
					А	С	Т	Ν
Patient	read count (%)	27211	14629 (53.8)	12514 (46.0)	30 (0.1)	24 (0.1)	13 (0.0)	1 (0.0)
Mother	read count (%)	27596	24718 (89.6)	2835 (10.3)	20 (0.1)	14 (0.1)	9 (0.0)	0 (0.0)
Father	read count (%)	29548	29500 (99.8)	0	30 (0.1)	6 (0.0)	10 (0.0)	2 (0.0)
Control	read count (%)	45574	45507 (99.9)	1 (0.0)	32 (0.1)	13 (0.0)	19 (0.0)	2 (0.0)

Supplementary Table S3. Mutant read frequencies of *ZMYND11***.** Deep sequencing indicated a mutant allele read frequency of 10.3% in the mother and 46.0% in Patient 53.

	Sex	female	female					
	age	24y	6у					
	Clinical score	8	9					
	Classification	molecular test	non-classic					
	MED13L alteration	c.6485C>A, p.(Thr2162Lys)	4.2-Mb deletion					
	Inheritance	de novo	de novo					
Dysmorph	ic features							
	🗖 broad/prominent forehead	+	-					
	bitemporal narrowing	+	+					
	horizontal eyebrows	_	-					
	upslanting palpebral fissures	_	+					
	long down palpebral fissures	-	-					
MED13L	enlargement of the palpebral fissures	_	-					
reatures	everted lower eyelids	_	-					
	full cheeks	+	_					
	bulbous nasal tip	-	+					
	deep philtrum	-	-					
	wide open mouth	_	-					
	protruding tongue	-	-					
	cupid-bow upper lip	-	-					
	microcephaly	+	-					
	synophrys	+	+					
	hyghly arched eyebrows	-	+					
CdLS	long curly eyelashes	+	+					
features	anteverted nostrilis	+	+					
	long philtrum	-	-					
	downturned corners of the mouth	_	-					
	short neck	-	+					
Upper lim	b abnormalities	+	+					
		5th finger clinodactyly	5th finger clinodactyly					
Congenita	l heart defects	-	+					
		bradycardia	ASD					
Hypotonia	1	+	+					
Age for inc	dependent walking	not able to walk	60 months					
Speech de	lav	+	+					
opecen de	10 y	only vocals ; "ma" "pa"	only a few sounds					
Epilepsy		+	-					
		from4-6y						
Developm	ental delay	+	+					
Intellectua	al disability	+	+					
Brain MRI	findings	NA	NA					
Others		recurrent otitis -						
Death or a	live	death alive						

Abbreviations: ASD, atrial septal defects; NA, Non available

Supplementary Table S4. Comparison of clinical features of *MED13L* haploinsufficiency syndrome and CdLS in two patients with *MED13L* abnormality. Pathogenic variants were identified in *MED13L* in two patients: c.6485C>A, p.Thr2162Lys in Patient 5, and a 4.2-Mb deletion involving *MED13L* in Patient 34. Both patients shared several clinical features of *MED13L* haploinsufficiency syndrome as well as CdLS.

	Gene	Gene-phenotype relationships [OMIM]	Function of proteins
	NIPBL	Cornelia de Lange syndrome 1	cohesin loading to the genome
	SMC1A	Cornelia de Lange syndrome 2	cohesin ring components
Cohesin complex	SMC3	Cornelia de Lange syndrome 3	cohesin ring components
and its regulation	HDAC8	Cornelia de Lange syndrome 5	SMC3 is deacetylated to be reused the cohesin by follwing cycle
factors	RAD21	Cornelia de Lange syndrome 4	cohesin ring components
	STAG2	Neurodevelopmental disorder, X-linked, with craniofacial abnormalities	cohesin ring components
	ESPL1	-	cleave RAD21 of the centromeric cohesin and open the cohesin ring
	ΔΝΙΚΡΠ11	KPC sundrama	transcription inhibition by interacting with histone deacetylases (HDACs) and
	ANKNDII	KBG Syndrome	histone molecules
		Coffin Siric syndrome 1	components of BAF complex, bind close to transcriptional start sites and
Chromatin	ANIDID		responsible for chromatine remodeling
modification	EP300	Rubinstein-Taybi syndrome 2	encoding acetyltransferase to mark H3K18 and H3K27 acetylation
factors	KMT2A	Wiedemann-Steiner syndrome	encoding methiltransferase to mark H3K4 methylation
	71/1/11	Montal retardation autocomal dominant 20	the SWI/SNF chromatin-remodeling complex to reset the chromatin to a
	ZIVITINDII		repressive state to prevent further transcription
	PHIP	Developmental delay, intellectual disability, obesity, and dysmorphic features	H3K4 methylation-binding protein
	AFF4	CHOPS syndrome	components of the super elongeation complex (SEC), RNAP2 pausing release
	0004		binding super-enhansers with NIPBL and co-regulate developmental
Transcriptional	BRD4		gene expression
		Mental retardation and distinctive facial features with or without cardiac	crucial link between transcription factors, coactivators, and the main mediator
regulation lactors	IVIED13L	defects	complex
	SETD5	Mental retardation, autosomal dominant 23	interacts with the PAF1 co-transcriptional complex
	TAF6	Alazami-Yuan syndrome	components of TFIID, binding promoter with RANP2 and transcriptional intiation

Supplementary Table S5. Function of genes associated with CdLS and CdLS-like. A total of 18 genes were classified to three functional categories: cohesin complex and its regulation, chromatin modification, and transcriptional regulation. Three genes (*ZMYND11, MED13L*, and *PHIP*) associated with diseases other than CdLS and CdLS-like were categorized to chromatin modification factors or transcriptional regulation factors. ZMYND11 was categorized to chromatin modification factors, of which the SWI/SNF chromatin-remodeling complex resets chromatin to a repressive state to prevent further transcription. MED13L was categorized to transcriptional regulation factors showing a crucial link to EP300 (as a histone modification factor). PHIP was categorized to chromatin modification factors (as an H3K4 methylation-binding protein).

Supplementary Table S1. Pathogenic variants and clinical features in all 57 patients.

Patient	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Sex	female	male	male	male	female	female	male	male	female	female	female	female	male	female
Age (at point of study entry)	59y	8y	1y 1m	3y 10m	24y	7827	21y	17y	4y	8y	2y 6m	5y 9m	12y	Зy
Clinical score	10	13	14	12	8	9	11	11	12	12	4	13	9	9
Classification	non-classic	classic	classic	classic	molecular testing	non-classic	classic	classic	classic	classic	molecular testing	classic	non-classic	non-classic
Gene	SETD5	NIPBL	NIPBL	NIPBL	MED13L	EP300	NIPBL	NIPBL	NIPBL	NIPBL	SMC1A	undetermined	NIPBL	undetermined
Variant type	nonsense	missense	nonsense	missense	missense	frameshift	missense	missense	CNV	frameshift	missense	-	frameshift	-
Mutation (hg19)	c.1852C>T	c.6893G>A	c.6179dup	c.7699T>G	c.6485C>A	c.7014_7028del	c.5595G>T	c.6620T>C	93.9-kb deletion	c.5174delA	c.1152C>G	-	c.2479_2480del	-
Protein	p.Arg618*	p.Arg2298His	p.His2060Glnfs*4	p.Tyr2567Asp	p.Thr2162Lys	p.His2338_Pro2342del	p.Arg1865Ser	p.Met2207Thr	-	p.Lys1725Serfs*17	p.Lys362Asn	-	p.Arg827Glyfs*2	-
Dysmorphic features														
synophrys	+	+	+	-	+	+	+	+	+	+	-	+	+	+
highly arched eyebrows	+	+	+	+	-	+	+	+	-	+	-	+	+	+
long curly eyelashes	+	+	+	+	+	+	+	+	+	+	-	+	+	+
ptosis	-	-	-	-	-	-	-	-	+	-	+	-	-	-
cleft lip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cleft palate		-	-	-	-	-	-	-	-	-	-	-	+	-
microcephaly	-	+	+	+	+	+	-	+	+	+	-	+	+	+
anteverted nostrils	+	+	+	+	+	+	-	+	-	+	-	+	+	+
depressed nasal bridge	+	-	+	-	-	-	+	-	+	-	-	-	+	+
long philtrum	+	+	+	+	-	-	+	+	-	+	-	+	-	+
thin upper lip	+	+	+	+	-	+	-	-	+	+	-	+	+	-
downturned corners of the mouth	+	+	+	+	-	+	-	-	-	+	-	+	+	-
micrognathia	-	-	-	+	+	-	-	-	-	+	-	+	-	+
short neck	+	+	-	-	-	+	+	+	+	+	-	+	-	+
high palate		-	-	-	-	+	+	-	+	-	-	+	-	-
widely spaced or absent teeth	-	-	-	-	NA	-	-	-	-	-	-	-	-	+
others					low set ears									
Growth														
weight below 5th percentile for age	+	-	+	+	-	-	-	-	+	+	+	+	-	-
neight or length below 5th percentile for age	-	+	+	+	+	+	+	+	+	+	-	+	-	-
prenatal growth retardation	-	+	+	+	-	NA	+	-	+	+	+	+	+	-
Development	• 													1
intellectual disability		1	NA			1		1			1			
developmental delay or mental retardation		-	INA	+	+	+	- T	-			-			
Behavior		-	1			1								· ·
attention deficit disorder	+	+	NA	+	+	+	-	+	NA	+	+	+	+	+
anxiety	+	+	NA	+	+	+	+	+	NA	+	+	+	-	+
aggression		-	ΝΔ	+	+	+	+	+	ΝA					+
self-injurious behavior	-	+	NA	-	-	+	+	-	NA	+	+	+	+	+
autistic behavior	+	-	NA	-	-	+	+	-	NA	+	-	-	-	+
Limb abnormalities	-									· ·				
absence of forearms	-	-	-	-	NA	-	-	-	+	-	-	-	-	-
small hands and/or feet	-	-	-	-	NA		-	-	-	+	-	-	+	-
oligodactvlv	-	-	-	-	NA	-	-	-	-	+	-	-	+	-
5th finger clinodactvlv	-	+	+	-	+	+	+	+	-	-	-	-	-	-
abnormal palmar crease		+	+	-	NA	+	+	+	-	+	-	-	+	-
syndactyly	-	-	+	+	NA	+	-	+	-	+	-	+	-	-
phocomelia	- 1	-	-	-	NA	-	-	-	-	-	-	-	-	-
limited elbow extension	-	-	-	-	NA	-	+	-	-	-	-	-	-	-
proximally placed thumbs	-	-	+	-	NA	+	+	-	-	-	-	-	-	-
others					club feet			un	ilateral absence of h	and				

Neurosensory–Skin														
ptosis	-	-	-	-	-	-	-	-	-	-	+	-	+	-
myopia	-	-	NA	-	+	+	-	-	-	+	+	-	-	+
deafness or hearing loss	-	-	NA	-	-	+	-	-	+	+	-	-	+	-
seizures	-	-	-	+	+	-	-	+	+	+	-	-	+	+
hirsutism, generalized	-	+	+	-	+	+	+	+	-	+	+	+	+	+
others									-					
Genitourinary														
cryptorchidism	-	+	+	-	-	-	+	-	-	-	-	-	+	-
hypoplastic (small) genitalia	-	-	+	+	-	-	-	-	-	-	-	-	+	+
renal abnormalities	-	-	-	-	-	-	-	-	-	-	-	-	-	-
others														
Cardiovascular														
ventricular septal defects	+	-	-	-	-	NA	-	-	-	-	-	-	-	-
atrial septal defects	-	-	-	-	-	NA	-	-	-	-	-	-	-	-
pulmonic ste-sis	-	-	+	-	-	NA	-	+	-	-	-	-	-	-
tetralogy of Fallot	-	-	-	-	-	NA	-	-	+	-	-	-	-	-
hypoplastic left heart	-	-	-	-	-	NA	-	-	-	-	-	-	-	-
bicuspid aortic valve	-	-	-	-	-	NA	-	-	-	-	-	-	-	-
others														
Others		-												
language delay	+	-	+	-	+	+	+	-	+	-	+	+	+	+
diaphragmatic hernia	-	-	-	-	-	-	-	-	-	-	-	-	-	-
gastroesophageal reflux	-	+	-	+	+	-	+	+	+	+	+	+	+	+
others														

Abbreviations: y, years; m, months; NA, not available

Patient	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Sex	female	male	male	female	male	female	female	male	male	female	male	male	male	female
Age (at point of study entry)	24y	26y	2y	Зу	4y	10y	3y 10m	25y	18y	6у	16y 2m	9y	41y	40y
Clinical score	11	4	12	8	12	6	8	7	12	10	13	9	7	11
Classification	classic	molecular testing	classic	molecular testing	classic	molecular testing	molecular testing	molecular testing	classic	non-classic	classic	non-classic	molecular testing	classic
Gene	NIPBL	undetermined	NIPBL	undetermined	NAA50	undetermined	ANKRD11	undetermined	undetermined	undetermined	NIPBL	undetermined	KMT2A	NIPBL
Variant type	splicing	-	frameshift	-	nonsense	nonsense	frameshift	-	-	-	frameshift	-	nonsense	splicing
Mutation (hg19)	c.3121+1G>A	-	c.1903_1904insA	-	c.93C>G	-	c.3255_3256del	-	-	-	c.5030_5031del	-	c.3592C>T	c.7410+4A>G
Protein	-	-	p.Ser635Tyrfs*3	-	p.Tyr31*	-	p.Lys1086Glufs*15	-	-	-	p.lle1677Serfs*21	-	p.Gln1198*	-
Dysmorphic features		1												
synophrys	+	+	+	+	+	+	+	+	+	+	+	+	+	+
highly arched eyebrows	+	-	+	+	+	-	-	-	+	+	+	+	+	+
long curly eyelashes	+	-	+	+	+	-	-	+	+	+	+	+	+	-
ptosis	-	-	-	+	-	-	-	-	-	-	-	-	-	-
cleft lip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cleft palate	-	+	-	-	+	-	-	-	-	-	-	-	-	-
microcephaly	+	-	+	+	+	-	+	+	+	-	+	-	-	+
anteverted nostrils	+	-	+	-	+	-	+	-	+	+	+	+	-	-
depressed nasal bridge	-	-	-	+	+	-	+	-	-	+	+	+	-	-
long philtrum	-	-	+	-	+	-	-	+	+	+	+	+	-	+
thin upper lip	+	-	+	-	+	+	+	-	+	+	+	+	+	+
downturned corners of the mouth	+	-	+	-	+	+	+	-	+	-	+	+	+	+
micrognathia	-	-	-	-	-	-	-	-	+	-	-	-	-	-
short neck	+	-	+	-	-	+	-	-	-	+	-	+	+	+
high palate	+	-	-	-	-	-	-	-	+	-	-	-	-	-
widely spaced or absent teeth	-	-	-	+	-	-	-	+	+	-	-	+	-	-
others														
Growth								1						
weight below 5th percentile for age	+	-	-	+	+	-	-	+	+	+	+	-	-	-
height or length below 5th percentile for age	+	-	-	+	+	-	-	+	+	+	+	-	+	+
prenatal growth retardation	+	-	+	-	+	-	-	-	+	-	+	-	+	+
others														
Development													1	
intellectual disability	+	+	-	+	-	+	-	+	-	+	+	-	+	-
developmental delay or mental retardation	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Benavior								1						
attention deficit disorder	+	+	-	+	+	+	+	-	-	+	+	+	+	+
anxiety	+	+	+	-	+	+	-	-	-	+	+	+	+	-
aggression	+	+	-	-	+	+	-	-	-	+	+	-	-	+
self-injurious benavior	+	+	-	+	+	+	-	+	-	+	+	-	-	-
autistic benavior	+	+	-	-	-	•	-	+	-	+		-	-	-
		1											1	
absence of forearms	-	-	-	-	-	-	-	-	-	-	-	-	-	-
smail hands and/of leet	-	-	+	-	+	+	-	-	+	-	+	-	-	+
Cth finger aligned at the		-	-	-	+	-	-	-	-	-	+	-		-
Stn linger cinodactyly	+	-	-	-	-	-	-	-	-	+	-	-		+
abnormai palmar crease	-	-	+	+	-	-	-	-	+	-	+	-		-
syndactyly	-	+	+	-	+	-	-	-	-	-	-	-	-	+
limited elbow extension	-	-	-	-	-	-	-	-	-	-	-	-		-
provimally placed thumbs	-	Ŧ	T	-	-	-	-	-	т	-	-	-	-	Ŧ
proximally placed thumbs	+	-	+	-	-	-	-	-	-	-	-	-	+	-
Utilets	I													

Neurosensory–Skin														
ptosis	-	-	-	+	-	-	-	-	-	-	-	-	-	-
myopia	-	+	+	+	+	+	-	-	+	+	+	+	-	-
deafness or hearing loss	+	-	+	-	-	-	+	+	-	-	-	+	-	-
seizures	-	+	+	-	-	+	-	-	-	+	+	-	-	-
hirsutism, generalized	-	+	+	+	-	+	-	-	-	+	+	-	+	-
others														
Genitourinary														
cryptorchidism	-	-	+	-	+	-	-	-	-	-	+	-	-	-
hypoplastic (small) genitalia	-	-	+	-	+	-	-	-	-	-	+	-	-	-
renal abnormalities	-	-	-	-	-	-	-	-	+	-	-	-	-	-
others													hypospadias	
Cardiovascular														
ventricular septal defects	-	-	-	-	-	-	-	-	-	-	+	-	-	-
atrial septal defects	-	-	-	-	-	-	-	-	-	-	+	-	-	-
atrial septal defects pulmonic ste-sis	-	-	-	-	-	-	-	-	-	-	+	-	-	-
atrial septal defects pulmonic ste-sis tetralogy of Fallot		-		- - -	- - -	- - -	- - -		-	-	-	-	- - -	
atrial septal defects pulmonic ste-sis tetralogy of Fallot hypoplastic left heart	- - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - -	+ - -	- - - -	- - -	- - -
atrial septal defects pulmonic ste-sis tetralogy of Fallot hypoplastic left heart bicuspid aortic valve	- - - -	- - - - - -	- - - - - -	- - - - +	- - - -	- - - -	- - - - -	- - - -	- - - -	- - - - -	+ - - - -	- - - - - -		- - - - -
atrial septal defects pulmonic ste-sis tetralogy of Fallot hypoplastic left heart bicuspid aortic valve others	- - - -	- - - - -	- - - - -	- - - - +	- - - - -	- - - - -	- - - -	- - - -	- - - - - aneur	- - - - - ism between atrial	+ - - - - septal	- - - - -	- - - - - - -	- - - -
atrial septal defects pulmonic ste-sis tetralogy of Fallot hypoplastic left heart bicuspid aortic valve others	- - - -	- - - -	- - - -	- - - +	- - - -	- - - -	-	- - - -	- - - - - aneur	- - - - - rism between atrial	+ - - - septal		- - - - -	- - - - -
atrial septal defects pulmonic ste-sis tetralogy of Fallot hypoplastic left heart bicuspid aortic valve others Others language delay	- - - -	- - - -	- - - -	- - - +	- - - -	- - - -	- - - -	- - - -	- - - - aneur	- - - rism between atrial	+ - - - septal +	- - - - -	- - - - -	- - - -
atrial septal defects pulmonic ste-sis tetralogy of Fallot hypoplastic left heart bicuspid aortic valve others Others language delay diaphragmatic hernia	- - - - - -	- - - - -	- - - - - -	- - - + -	- - - - -	- - - - -	- - - - - -	- - - -	- - - - - aneur	- - - rism between atrial + -	+ - - septal + -	- - - - - - -	- - - - - - - - - - - - -	- - - - -
atrial septal defects pulmonic ste-sis tetralogy of Fallot hypoplastic left heart bicuspid aortic valve others Others language delay diaphragmatic hernia gastroesophageal reflux	- - - - - - - - - - - - - - - +	- - - - - - - - - - - - - - - - - - -	- - - - - -	- - - + - - + - - +	- - - - - - - - - - - - - - - - - - -	- - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - -	- - - - - - - - - - - +	- - - - rism between atrial + - +	+ - - septal + - + +	- - - - - - - - +	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -

Patient	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Sex	female	male	male	male	male	female	female	male	female	female	male	male	male	female
Age (at point of study entry)	25v	43v	1v 1m	16v	13v	6v	9v	26v	3v	14v	3v 9m	5v 10m	NA	15v
Clinical score	259	12	13	7	10	9	9	13	11	13	11	12	10	13
Classification	non classic	classic	dassic	molocular tosting	non classic	non classic	non classic	classic	classic	classic	classic	classic	non classic	classic
Gene	undetermined	undetermined	NIDRI	undetermined	undetermined	MED131	undetermined	NIDBI	undetermined	NIDRI	NIPRI	undetermined	NIDRI	SMC1A
Variant tune	undetermined	undetermined	framochift	undetermined	unacterminea	CNIV	undetermined	nonconco	undetermined	nonconco	nonconco	undetermined	missonso	missonso
vununt type	-	-	Indiffestille	-	-	CINV	-	nonsense	-	nonsense	nonsense	-	IIIIsselise	IIIISSEIISE
Mutation (hg19)	-	-	c.6653_6655del	-	-	4.2-Mb deletion	-	c.5509C>T	-	c.826C>T	c.190C>T	-	c.6343G>T	c.1487G>A
Protein	-	-	p.Asn2218del	-	-	-	-	p.Arg1837*	-	p.Gln276*	p.Gln64*	-	p.Gln2115Cys	p.Arg496His
Dysmorphic features														
synophrys	+	+	+	+	+	+	+	+	+	+	+	+	+	+
highly arched eyebrows	+	+	+	+	+	+	+	+	+	+	+	+	+	-
long curly eyelashes	-	+	+	-	-	+	-	+	+	+	+	+	+	+
ptosis	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cleft lip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cleft palate	-	-	-	-	-	-	+	-	-	-	-	+	-	-
microcephaly	+	-	+	-	+	-	-	+	+	+	+	+	-	+
anteverted nostrils	-	-	+	-	-	+	-	+	-	+	+	+	+	-
depressed nasal bridge	-	+	+	-	-	-	+	+	-	+	-	-	-	+
long philtrum	-	+	+	-	+	-	-	+	+	+	+	+	-	+
thin upper lin	+	+	+	+	+	-	-	+	+	+	_	+	+	+
downturned corners of the mouth	+	+	+	+	+	-	_	+	+	+	-	+		+
micrognathia	-		+		+	-	-	+		+	-		-	
short pack	-					-		-						
high polate	Ŧ		-		-	T	-	т	T	т		-	-	-
high palate	-	Ŧ	-	+	-	-	+	-	-	-	+	-	+	-
widely spaced or absent teeth	-	-	-	-	-	-	+	-	-	+	-	-	-	-
Others						low set ears								
Growth		1												
weight below 5th percentile for age	+	-	+	+	+	-	+	+	+	+	+	+	+	+
height or length below 5th percentile for age	+	-	-	+	+	+	+	+	+	+	+	+	+	+
prenatal growth retardation	+	+	+	-	-	+	+	+	+	+	+	-	+	-
others														
Development							1							1
intellectual disability	+	+	NA	+	+		+	+	+	+	+	+	+	+
developmental delay or mental retardation	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Behavior						1	1							
attention deficit disorder	+	+	NA	+	+	+	-	+	+	+	+	+	-	+
anxiety	+	+	NA	+	-	+	-	+	+	+	-	+	-	+
aggression	-	-	NA	-	-	+	+	+	+	-	+	-	-	-
self-injurious behavior	+	-	NA	-	+	-	+	+	-	+	+	-	-	+
autistic behavior	-	+	NA	+	+	-	-	+	-	-	+	-	-	-
Limb abnormalities														
absence of forearms	-	-	-	-	-	-	-	-	-	-	-	-	-	-
small hands and/or feet	-	-	-	-	-	-	-	+	-	-	-	-	-	-
oligodactyly	+	-	-	-	-	-	+	-	-	-	-	-	-	-
5th finger clinodactyly	-	+	+	-	+	+	-	-	-	-	-	-	-	+
abnormal palmar crease	-	-	+	+	-	+	+	+	-	+	-	-	-	-
syndactyly	-	+	-	-	-	-	+	+	-	+	-	-	+	-
phocomelia	-	-	-	-	-	-	-	-	-	-	-	-	-	-
limited elbow extension	+	+	-	-	+	-	-	+	-	+	-	-	-	+
proximally placed thumbs	-	-	+	-	+	-	+	+	-	+	-	-	-	-
others		asymmetry									camptodactvlv	/		
otileis									1					

Neurosensory–Skin														
ptosis	-	-	-	-	-	-	-	-	-	-	-	-	-	-
myopia	-	-	-	+	-	-	-	-	-	-	-	-	-	-
deafness or hearing loss	-	-	-	+	-	-	-	-	+	-	+	-	-	+
seizures	+	-	+	+	-	-	-	-	+	-	-	+	-	-
hirsutism, generalized	+	+	-	+	-	+	-	+	+	+	+	-	+	+
others							coloboma		white lesions		lacrimal glands	5		
Genitourinary														
cryptorchidism	-	-	+	+	-	-	-	+	-	-	-	+	-	-
hypoplastic (small) genitalia	-	+	+	-	-	-	-	+	+	-	-	-	-	+
renal abnormalities	-	+	-	+		-	-	-	-	+	-	-	-	-
others					hydrocele									
Cardiovascular														
ventricular septal defects	-	-	-	-	-	-	-	+	-	-	-	-	-	-
atrial septal defects	-	-	-	-	-	+	-	+	+	-	-	+	-	-
pulmonic ste-sis	-	-	-	-	-	-	-	+	-	-	+	-	-	-
tetralogy of Fallot	-	-	-	-	-	-	-	-	-	-	-	-	-	-
hypoplastic left heart	-	-	-	-	-	-	-	-	-	-	-	-	-	-
bicuspid aortic valve	-	-	-	-	-	-	-	-	-	-	-	-	-	-
others														
Others														
language delay	+	-	+	+	+	-	+	+	+	+	+	-	+	+
diaphragmatic hernia	-	-	-	+	-	-	-	-	-	-	-	-	-	-
gastroesophageal reflux	+	+	-	-	+	+	+	+	+	+	-	+	+	+
others					scoliosis					small cerebellum				scoliosis

Patient	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57
Sex	male	male	male	female	female	male	female	female	female	female	male	male	female	male	male
Age (at point of study entry)	11y	4y	8m	6m	16y	18y	8у	11y	8y	5y	5y 10m	7y	4y 6m	11y	6у
Clinical score	9	14	10	14	5	9	10	6	7	5	15	6	10	6	9
Classification	non-classic	classic	non-classic	classic	nolecular testin	non-classic	non-classic	molecular testing	molecular testing	molecular testing	classic	molecular testing	non-classic	molecular testing	non-classic
Gene	ANKRD11	undetermined	NIPBL	undetermined	undetermined	NIPBL	NIPBL	NIPBL	-	EHMT1	ZMYND11	NIPBL	NIPBL	PHIP	undetermined
Variant type	nonsense	-	missense	-	-	frameshift	missense	missense	CNV	CNV	frameshift	splicing	missense	missense	-
Mutation (hg19)	c.5434C>T	-	c.6027G>C	-	-	c.8325_8326delinsT	c.6448C>G	c.6893G>A	9p 14.1-Mb deletion, 571-kb duplication	9q 773.8-Kb deletion	c.1438delG	c.5329-15A>G	c.7079G>T	c.1156G>A	-
Protein	p.Gln1812*	-	p.Leu2009Phe	-	-	p.Lys2775Asnfs*4	p.Leu2150Val	p.Arg2298His	-	-	p.Asp480Thrfs*3	-	p.Glu2360Val	p.Asp386Asn	-
Dysmorphic features					·										
synophrys	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
highly arched eyebrows	-	+	+	+	+	+	+	+	-	-	+	+	+	-	+
long curly eyelashes	+	+	+	+	+	+	+	-	-	+	+	+	+	+	+
ptosis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cleft lip	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cleft palate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
microcephaly	+	+	+	+	+	-	-	-	-	-	+	-	+	-	+
anteverted nostrils	-	+	+	+	-	-	+	+	+	-	+	+	-	+	+
depressed nasal bridge	+	+	+	+	-	+	-	-		+	-	+	-	+	-
long philtrum	+	+	-	+	-	+	-	-	+	-	+	-	+	-	-
thin upper lip	+	+	-	+	-	-	+	-		-	+	-	+	-	+
downturned corners of the mouth	+	+	+	+	-	-	+	-	-	-	+	-	+	-	-
micrognathia	-	+	-	-	-	-	+	-	-	-	+	-	+	-	-
short neck	-	-	+	-	-	+	-	-	-	-	-	-	-	+	-
high palate	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
widely spaced or absent teeth	+	-	-	-	-	+	+	-	-	-	-	-	-	-	-
others														macrocephaly	
Growth		,		;						·		· · · · · · · · · · · · · · · · · · ·			
weight below 5th percentile for age	-	+	+	+	+	-	-	-	-	-	+	+	+	-	-
height or length below 5th percentile for age	-	+	+	+	+	+	-	-	-	-	-	+	+	-	-
prenatal growth retardation	+	+	+	+	+	-	+	-	-	-	+	-	+	+	-
others														obesity	
Development		r	r		· · · · · · · · · · · · · · · · · · ·					·	r				
intellectual disability	-	+	NA	NA	+	-	+	+	+	-	+	-	+	+	+
developmental delay or mental retardation	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+
Behavior		1								ì	1	(1	
attention deficit disorder	+	+	NA	NA	+	+	+	+	+	+	-	+	+	+	+
anxiety	+	+	NA	NA	+	+	+	+	+	+	+	-	+	+	+
aggression	-	+	NA	NA	-	-	+	+	+	+	-	-	+	-	+
self-injurious behavior	-	-	NA	NA	-	-	+	-	+	+	+	-	+	+	-
autistic behavior	-	-	NA	NA	+		-	+	+	+	-	-	-	-	-
Limb abnormalities		1	1	1	1					1				1	
absence of forearms	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-
small hands and/or feet	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-
oligodactyly	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-
5th finger clinodactyly	-	+	-	+	-	-	+	-	-	-	-	-	-	-	-
abnormal palmar crease	-	-	+	-	-	-	+	-	-	-	+	-	-	-	-
syndactyly	-	-	+	+	-	+	+	-	-	-	-	-	-	-	-
phocomelia	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
limited eldow extension	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-
proximally placed thumbs	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-
others		camptodactyly					sternum	asymmetry							

Neurosensory–Skin															
ptosis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
myopia	-	-	-	-	-	+	-	-	-	-	+	-	-	-	-
deafness or hearing loss	-	+	-	-	-	-	-	-	+	+	-	-	-	-	+
seizures	+	-	-	-	+	+	-	-	-	-	-	-	-	-	+
hirsutism, generalized	-	+	-	+	+	+	+	+	-	-	+	+	+	-	+
others															
Genitourinary			-	_											
cryptorchidism	+	-	+	-	-	+	-	-	-	-	+	-	-	-	-
hypoplastic (small) genitalia	-	-	-	-	+	+	NA	-	-	-	+	-	-	-	+
renal abnormalities	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
others															
Cardiovascular															
ventricular septal defects	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-
atrial septal defects	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pulmonic ste-sis	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-
tetralogy of Fallot	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
hypoplastic left heart	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
bicuspid aortic valve	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-
others				aortic coarctation								aortic reflux			
Others															
language delay	-	+	NA	+	+	+	+	+	+	+	+	-	+	+	+
diaphragmatic hernia	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
gastroesophageal reflux	-	+	+	+	+	-	+	+	-	+	+	-	-	-	+
others									inguinal hernia						