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27 Abbreviations

28 PLCZ1, Phospholipase C-zeta; 

29 ICSI, intracytoplasmic sperm injection; 

30 ER, endoplasmic reticulum; 

31 InsP3R, inositol 1,4,5-trisphosphate receptor;

32 PN, pronucleus:

33 [Ca2+]i, intracellular calcium ion concentration;

34 ROSI, round spermatid injection

35 IVF, in vitro fertilizaition;

36 CaMKII, Ca2+/CaM-dependent protein kinase II;

37 MAPK, mitogen activated protein kinase;

38 APC/C, anaphase-promoting complex/cyclosome;

39 iPS cells, induced pluripotent stem cells.
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41 Abstract

42 Phospholipase C-zeta (PLCZ1), a strong candidate of egg-activating sperm factor, can 

43 induce Ca2+ oscillations and cause egg activation. For the application of PLCZ1 to 

44 clinical use, we examined the pattern of Ca2+ oscillations and developmental rate by 

45 comparing PLCZ1 RNA injection methods with the other current methods, such as 

46 cytosolic aspiration, electrical stimulation and ionomycin treatment in human oocytes. 

47 We found that the pattern of Ca2+ oscillations after PLCZ1 RNA injection exhibited 

48 similar characteristics to that after ICSI treatment. We also determined the optimal 

49 concentration of PLCZ1 RNA to activate the human oocytes. Our findings suggest that 

50 human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed 

51 activation, leading to normal and efficient development.
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54 Introduction

55 At fertilization, mammalian oocytes show repetitive transient increase in intracellular 

56 calcium ion concentration ([Ca2+]i), known as Ca2+ oscillations. Each of which is due to 

57 Ca2+ release from the endoplasmic reticulum (ER) mainly through type 1 inositol 1,4,5-

58 trisphosphate receptor (InsP3R) [1-4]. [Ca2+]i each rise lasts about 1 min and the Ca2+ 

59 transients occur at intervals of 5–30 min [1,5]. The Ca2+ oscillations are a pivotal signal 

60 for egg activation and embryo development [6-7]. They cause resumption of the second 

61 meiosis and subsequent formation of male and female pronuclei (PN).

62 Repetitive Ca2+ release is induced by a cytosolic sperm factor driven into the ooplasm 

63 upon sperm-egg fusion [8]. Several lines of evidence indicate that a sperm-specific 

64 isozyme "zeta" of InsP3-producing enzyme phospholipase C (PLCZ1) is a strong 

65 candidate to be the sperm factor [1,9-12]. Depleting PLCZ1 from sperm extract by anti-

66 PLCZ1 antibody abolished the Ca2+ oscillation-inducing activity [9]. Expressing PLCZ1 

67 in the oocyte by RNA injection induced Ca2+ oscillations and the egg activation [9,12]. 

68 Recombinant PLCZ1 protein injected in the oocyte could elicit Ca2+ oscillations [13,14]. 

69 Knocking down PLCZ1 in transgenic mice resulted in the deficiency of Ca2+ oscillation 

70 inducing activity of the sperm and no offspring [15]. 

71 At present, one of the most powerful therapeutic procedures for male factor infertility 

72 is to inject a single sperm directly into the egg, known as ICSI. 

73 Ca2+ oscillations have been observed in human oocytes after ICSI [16]. However, 1–5% 

74 of all ICSI treatments resulted in failure, and the main cause for this was shown to be 

75 deficiencies in the egg activation process [17-19]. Several cases of male factor infertility 

76 are probably results of dysfunctional isoforms or reduced expression levels of PLCZ1 

77 [20-22]. Egg activation failure can be treated by methods to elevate [Ca2+]i, such as 

78 applying Ca2+ ionophore, as currently used in most clinics, but such chemicals cannot 

79 mimic the pattern of [Ca2+]i rises at normal fertilization and can be potentially cytotoxic 

80 or mutagenic for eggs and embryos [23]. On the other hand, PLCZ1 is a native 

81 physiological egg activating factor. When expressed by the injection of in vitro 



82 transcribed RNA, PLCZ1 can induce fertilization-like Ca2+ oscillations, resulting in 

83 parthenogenetic development up to blastocysts in mice, cows, pigs, monkeys and humans 

84 [9,24-26]. In addition to ICSI, round spermatid injection (ROSI) is developing as an 

85 alternative treatment for patients who have defects in spermatogenesis. Recently, it has 

86 been shown that ROSI is applicable to men with azoospermia, who possess only round 

87 spermatids; this application resulted in the birth of healthy babies [27]. The expression of 

88 egg-activating sperm factor could be detected at primary spermatocyte and round 

89 spermatid in monkeys and humans, respectively [28-30]. On the contrary, it had also been 

90 shown that round spermatids injected into mouse eggs could not induce egg activation 

91 [31]. In human, the precise stage of spermatogenesis from which PLCZ1 starts to express 

92 remains unknown. Moreover, the expression level of PLCZ1 or Ca2+ oscillation-inducing 

93 activates is considered to be different among the men with azoospermia. From these 

94 reason, stimulation for egg activation should be conducted to resume the cell cycle 

95 progression after ROSI. Thus, the effective egg activation method is also useful for ROSI 

96 as well as ICSI failure.

97 In this study, to establish the best egg activation method and improve development 

98 rates after ICSI or ROSI, we compared the pattern of [Ca2+]i elevation after stimulation 

99 by cytosolic aspiration, electrical stimulation, ionomycin treatment and PLCZ1 RNA 

100 injection. We found that the pattern of Ca2+ oscillations after PLCZ1 RNA injection 

101 exhibited similar characteristics to that after ICSI treatment. And, in terms of the 

102 developmental rates, we determined the optimal concentration of PLCZ1 RNA to activate 

103 the human oocytes. Our data provide the basis for future studies to apply PLCZ1 RNA 

104 injection to clinical use to rescue human oocytes from failed activation.

105

106

107 Materials and Methods

108 Ethical aspects

109 This study was conducted with the informed consent of all participating patients. The 



110 Institutional Review Boards of the Saint Mother Obstetrics and Gynecology Clinic 

111 approved this study on January 17, 2016. This study was registered and adhered to 

112 International Committee of Medical Journal Editors criteria. The University Hospital 

113 Medical Information Network Clinical Trials Registry is UMIN000020860.

114 Preparation of PLCZ1 RNA

115 cDNA encoding human PLCZ1 (GenBank accession number NM_033123) was 

116 prepared using PCR techniques from human testis cDNA library (PCR Ready First Strand 

117 cDNA; C1234260; BioChain Institute, Hayward, CA), and cloned into pTNT vector 

118 (Promega, Madison, WI). The 30 nucleotides of poly (A) region of pTNT vector was 

119 substituted with 168 nucleotides of poly (A) tail. The constructed plasmids were purified 

120 with NucleoBond Xtra Midi Plus EF kit (Takara, Shiga, Japan) and digested with BamHI, 

121 and resulting fragment was used as templates for in vitro transcription ([32] for details). 

122 Briefly, RNA was synthesized by T7 polymerase using mMessage mMachine Kit 

123 (Thermo Fisher Scientific, Waltham, MA) and purified by RNeasy Mini Kit (Qiagen, 

124 Venlo, Netherlands). Dried RNA was resolved in 150mM KCl solution (final 

125 concentration, ~1.5 g/l) and checked the quality by electrophoresis. RNA was diluted 

126 to the range between 0.01 and 1000 ng/l and injected into oocytes.

127 Procedure for egg activation

128 Human M-II oocytes were obtained from IVF patients who had consented to participate 

129 in this study. The number of provided oocytes was limited to two at most. Oocytes were 

130 activated by one of the following four procedures.

131 1. PLCZ1 RNA injection

132 Various concentrations of PLCZ1 RNA were injected into oocyte by using a Piezo 

133 manipulator in the fluorescence microscope. In order to minimize damage to the egg, 

134 RNA was injected very mildly. Piezo settings were intensity 2 and speed 2. In the dish, 

135 the pipette was washed in 12% PVP drop, PLCZ1 RNA was aspirated, and approx. 4 pl 

136 of PLCZ1 were injected into the oocyte in the HTF medium (10% SPS contained) covered 

137 with mineral oil. The injected volume of PLCZ1 is the same to that of ROSI. 



138 2. Cytosolic aspiration and injection

139 2-3 times of cytosolic aspiration as the same way of ICSI was performed following 

140 Tesarik’s method [33]. Then oocytes were cultured in the HTF medium with 10% SPS.

141 3. Electrical stimulation

142 Oocytes were placed in 295-mM mannitol solution with 0.1 mM CaCl2 and 0.05 mM 

143 MgCl2, and stimulated with an alternating current of 5 V/cm at 1 MHz for 10 s followed 

144 by a single 1.2-kV/cm pulse of direct current for 99 ms using an electro-cell fusion 

145 generator (LF201; Nepagne). After electrical stimulation, oocytes were returned to the 

146 HTF medium with 10% SPS.

147 4. Ionomycin treatment

148 Oocytes were culture in the microdrop of HTF with 10% SPS containing 10 M of 

149 Ionomycin, for 5 min. 

150 [Ca2+]i measurement

151 Oocytes were placed in SPS medium and loaded with Ca2+-sensitive fluorescent dye 

152 Fluo8H (Molecular Probes, Inc., Eugene, OR) for 30 min at room temperature in the dark 

153 box. After loading, oocytes were activated by one of the above mentioned four 

154 procedures, and subjected to [Ca2+]i measurement with a 20 X objective lens for 2 h at 

155 37°C, with 5% CO2 gas in the chamber(Olympus IX-71, Yokogawa CSU-X1 and CSU-

156 Frontier ). Ca2+ images were acquired at intervals of 1 sec by using an image processor 

157 (8 bit; DP73, Olympus, Tokyo) and analyzed by cellSens dimension (Olympus). 

158 Evaluation of egg activation

159 Appearance of polar body and formation of pronuclei were confirmed 12-14 hours after 

160 egg activation with an inverted microscope (Olympus IX-70). For comparative studies, 

161 morphological changes, pattern of Ca2+ oscillations and cleavage rates were analyzed.

162 Statistical Analysis

163 Data were analyzed using the Microsoft Excel Add-in software (MacToukei-kaiseki 

164 v2.0) and statistical significances were evaluated by Student’s T test.

165



166

167 Results

168 To compare the pattern of Ca2+ oscillations induced by PLCZ1 RNA with that by other 

169 egg activation methods, [Ca2+]i was monitored by Fluo8H, fluorescent Ca2+ indicator, 

170 after the treatment by various egg activation methods. In the cytosolic aspiration and 

171 injection method, Ca2+ oscillations were not observed (Fig.1A). In the ionomycin 

172 activation method, fluorescent intensity gradually decreased from 5 min after treatment. 

173 Broad [Ca2+]i increase was observed from 40 to 60 min after treatment, but Ca2+ 

174 oscillations did not occur (Fig.1B). Figure 1C showed that a series of Ca2+ oscillations 

175 after ICSI. In this egg, 1st Ca2+ spike occurred at 130 min after ICSI treatment. Average 

176 interspike interval was 9.09 ± 3.20 min. In the electrical stimulation, increase of [Ca2+]i 

177 was observed immediately after treatment. After that, low amplitude of Ca2+ spikes were 

178 induced at random intervals. It was different from the pattern of Ca2+ oscillations induced 

179 by ICSI (Fig.1C and Fig.1D). In the PLCZ1 RNA activation method, PLCZ1 RNA (100 

180 ng/l) was injected into oocytes and fluorescent intensity measured by conventional 

181 fluorescence microscopy (Fig.1E) and confocal microscopy (Fig.1F). 1st Ca2+ spike 

182 occurred at 17 min and 28 min respectively. In comparison with conventional 

183 fluorescence microscopy, higher amplitude and longer lasting of Ca2+ oscillations in low 

184 background level could be recorded by confocal microscopy. These results showed that 

185 the pattern of Ca2+ oscillations by PLCZ1 RNA injection was quite similar to that of Ca2+ 

186 oscillations seen in ICSI eggs

187 For adaptation of egg activation by PLCZ1 RNA injection to clinical use, optimal 

188 concentrations of PLCZ1 RNA for preimplantation development were examined. Various 

189 concentrations of PLCZ1 RNA　(0.01-1000 ng/l) were injected into eggs by ICSI 

190 needle and the developmental rate evaluated (Table 1). The result showed that eggs 

191 injected with 100 ng/l PLCZ1 RNA exhibited the highest rate in extrusion of 2nd polar 

192 body (66.7%, n=18), formation of female pronucleus (66.7%, n=18) and developmental 

193 capability.



194 Frequency of Ca2 spikes and accumulated time of elevated [Ca2+]i are important 

195 factors for egg activation. The patterns of Ca2+ oscillations induced by 100 ng/l PLCZ1 

196 RNA (Table 2) and ICSI (Table 3) were analyzed. The latency time of Ca2+ oscillations 

197 in PLCZ1 (18.88 ± 4.26 min) was different from that of ICSI (87.8 ± 35.54 min). Number 

198 of spikes per 2 h and interspike interval were not significantly different. Furthermore, 

199 duration of 1st Ca2+ spike was 2.69 ± 0.68 min and 2.83 ± 0.97 min, and mean duration 

200 of Ca2+ spikes (2nd to 6th) was 1.16 ± 0.06 min and 1.68 ± 0.53 min in PLCZ1 RNA 

201 injected oocytes and ICSI oocyte, respectively (not shown data). These results suggested 

202 that the pattern of Ca2+ oscillations induced by PLCZ1 RNA (100 ng/l) were comparable 

203 with that induced by ICSI.

204 To reveal the usefulness of PLCZ1 RNA injection method for the egg-activation 

205 after ROSI, the effect of various activation methods on development of embryos was 

206 examined. After treatment of ionomycin, PLCZ1 RNA and electrical stimulation, the 

207 timing of PN formation and developmental rate were evaluated (Table 4). The result 

208 indicated that embryo development induced by PLCZ1 RNA was better than the other 

209 activation methods. At day 3, approx. 50% embryos in which PN were observed grew to 

210 over 7 cells after PLCZ1 RNA injection.

211

212

213 Discussion

214 Ca2+ oscillations pattern in human oocyte induced by PLCZ1 RNA injection.

215 Ca2+ mobilization is essential for egg-activation and prerequisite for normal embryo 

216 development [7,34]. In this research, to find the most effective egg activation method for 

217 preimplantation development, we examined the Ca2+ oscillations pattern induced by 

218 cytosolic aspiration and injection, ionomycin treatment, electric stimulation and PLCZ1 

219 RNA injection, compared with that induced by ICSI. In the cytosolic aspiration and 

220 injection method, Ca2+ oscillations did not occur, but a sustained low-amplitude [Ca2+]i 

221 response was observed 20 min after stimulation. This may be caused by Ca2+ influx from 



222 culture medium or Ca2+ leak form intracellular Ca2+ stores, such as endoplasmic reticulum 

223 (ER) or mitochondria [35]. In the ionomycin treatment, long lasting [Ca2+]i increase was 

224 observed 20 min after stimulation. Ionomycin is a calcium ionophore with reported faster 

225 effects than A23187 [36]. It has been shown that human oocytes activated with ionomycin 

226 exhibited one or two large [Ca2+]i increase followed by prompt return to baseline levels 

227 [37-39]. In our study, ionomycin treatment lead to development to over 7 cells at Day3., 

228 but it was less effective than either electrical stimulation or PLCZ1 RNA injection (Table 

229 4). Adequate duration of a sustained [Ca2+]i elevation is necessary for accomplishing the 

230 successful egg-activation [40]. Thus, this may be the reason for the lowest developmental 

231 rate in ionomycin treatment among activation methods tested in this experiment. Ca2+ 

232 oscillations could be observed in ICSI eggs as previously reported [16]. Latency time is 

233 around 88 min after ICSI treatment (Table 3). In mature spermatozoa, PLCZ1 can be 

234 found localized to the acrosomal, equatorial and/or post-acrosomal regions [41-43]. The 

235 latency from the sperm-egg fusion to the beginning of [Ca2+]i rise takes several minutes 

236 in mouse eggs [44,45]. Assuming that PLCZ1 proteins present in the equatorial region 

237 are mostly soluble, they can readily diffuse out of the head upon the fusion with the egg, 

238 whereas PLCZ1 may diffuse gradually from injected sperm to egg cytoplasm. In the 

239 electrical stimulated eggs, rapid increase of [Ca2+]i and subsequent low amplitude of 

240 random Ca2+ spikes were observed (Fig. 1D). This is the first report for [Ca2+]i 

241 measurement after electrical stimulation, not during electrical stimulation. To reveal its 

242 underlying mechanism, further experiments may be required. When 100ng/l of PLCZ1 

243 RNA was injected into oocytes, amplitude, duration and time integral of Ca2+ oscillations 

244 were similar to that in the ICSI oocytes (Table 2 and 3). This Ca2+ oscillatory behavior 

245 was probably due to the positive feedback of Ca2+ to PLCZ1 activity. Dissociation 

246 constant for Ca2+ activation of PLCZ1 is very low at around the resting [Ca2+]i. This idea 

247 of Ca2+-on-PLCZ1 mechanism is supported by some experimental results [46]. Our 

248 comparative analysis among egg-activating methods indicated that PLCZ1 RNA was 

249 expected to be a better therapeutic agent as an artificial but physiological activator, 



250 leading to normal and efficient preimplantation development. 

251 Number of Ca2+ spikes and preimplantation development

252 The number of [Ca2+]i. rise has pivotal roles on the embryo development [3]. When the 

253 embryos experienced either too few or too many Ca2+ oscillations, the growth rates to 

254 blastocyst stage were not significantly changed in vitro fertilized mouse eggs, but ∼ 20% 

255 of the transcripts were mis-regulated and fewer offspring were born following embryo 

256 transfer [47], indicating that the pattern of Ca2+ oscillations is significant for normal 

257 preimplantation development. Moreover, for full activation of Ca2+-bound calmodulin 

258 (CaM) activates Ca2+/CaM-dependent protein kinase II (CaMKII) and mitogen activated 

259 protein kinase (MAPK), total time of [Ca2+]i rises is quite important [48,49]. CaMKII 

260 inactivates Emi2, one of the CSF constituents, resulting in release of APC/C and 

261 degradation of cyclin B1 to resume the second meiotic division [52,53]. The number of 

262 Ca2+ oscillations is involved in a decrease in MAPK activity and PN formation [6]. In this 

263 research, we showed that PLCZ1 RNA injection could mimic the number and total time 

264 of Ca2+ spikes induced by sperm

265 Safety of PLCZ1 RNA injection for clinical use

266   One of the problems for RNA injection methods is that the protein is continuously 

267 expressed by existence of the injected RNA. Therefore, it becomes difficult to control the 

268 expression level of PLCZ1 to elicit appropriate frequency of Ca2+ oscillations. In mouse 

269 eggs, with high concentration of PLCZ1 RNA, a burst of Ca2+ spikes occurred 120–180 

270 min after RNA injection, and prevented the 1st mitotic division [32]. In the present 

271 experiments, we determined the optimal concentration of injected RNA for normal 

272 embryo development (Table 4). Short type variant of PLCZ1 (s-PLC) has been reported 

273 to be expressed in the mouse testis. Ca2+ oscillation-inducing activity of s-PLCζ was 

274 estimated to be roughly two orders of magnitude lower than that of PLCZ1 [32]. For 

275 removal of the cytotoxicity and easy handling, s-PLC RNA was injected into mouse 

276 oocytes following ROSI. As a result, healthy offspring were born and all grew to be 

277 normal adults and reproduced healthy second-generation mice [52]. However, injection 



278 with high concentration of human PLCZ1 RNA did not induce a burst of Ca2+ spikes in 

279 human oocytes (Table 1). Previous reports showed that the frequency of human sperm- 

280 and PLCZ1 RNA-induced Ca2+ oscillations was higher than observed at fertilization in 

281 mouse oocytes [53-55]. This is probably because the down-regulation or sensitivity to 

282 Ca2+ of InsP3 receptor is different between human and mouse oocytes [56,57]. Generally, 

283 the stability of mRNA depends on the length of poly (A) tail at the 3’ untranslated region. 

284 [58], but average of RNAs half-lives is about 9 hours [59]. Then, it is not likely that 

285 injected PLCZ1 RNA could exist in the cells for a long time. Introduction of mRNA into 

286 cells has been also applied for generating iPS cells, because mRNA has no ability to 

287 integrate into the host genome [60-62]. Thus, our findings provide the basis for clinical 

288 use of PLCZ1 RNA as an egg-activating agent and will be beneficial in further 

289 experiments studying the mechanisms of human egg activation.

290
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525 Figure legends

526 Figure 1.

527 Ca2+ oscillations in human oocyte induced by cytosolic aspiration (A), Ionomycin 

528 treatment (B), ICSI (C) and electrical stimulation (D) were observed by conventional 

529 fluorescence microscopy. PLCZ1 RNA (100 ng/l) induced Ca2+ oscillations were 

530 observed by conventional fluorescence microscopy (E) and confocal laser scanning 

531 microscopy (F). The timing of stimulation was set as the zero time. At least 3 sets of 

532 experiments were performed. Representative results are shown.

533

534 Table 1. Optimal concentration of PLCZ1 RNA for preimplantation development

535

536 Table 2. Profile of Ca2+ oscillations induced by PLCZ1 RNA

537

538 Table 3. Profile of Ca2++ oscillations induced by ICSI

539

540 Table 4. Effect of activation method on development of ROSI embryos
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Conc.of 
PLCZ1 

RNA(ng/μl)

0.01 (n=13)

Day21 Day31

23.1 mono cell(1), 
2 cell(1), 3 cell(1)

14.3

66.7

0

16.0

9.1

66.7

Table 1 

1No. of Eggs in parenthesis.

Table 1. Optimal concentration of PLCZ1 RNA for preimplantation 
development

Day1

0

2nd PB(%) 1PN(%)

0.05 (n=14)

0.1 (n=4)

1 (n=6)

5 (n=25)

10 (n=11)

100 (n=18)

1000 (n=3)

23.1

14.3

66.7

0

8.0

9.1

66.7

0

2 cell(1), 
5 cell(1)

2 cell (2)

-

2 cell (2)

-

-

-

-

2 cell (1) 3 cell (1)

mono cell (2) mono cell (2)

mono cell(1), 
2 cell(6), 3 

cell(2), 4cell(3)

mono cell(1), 
2 cell(1)

3 cell(4), 4 cell(3), 
5 cell(2), 6cell(1), 
8cell(1), 10 cell(1)



Egg No. 1

Latency (min)

No. of Spikes/2hr

Interspike 
interval (min)

1 3 4 5 6 Average2

17 16 21 16 22 18.88±4.26

7 29 27 10

10.00

6 13.88±8.64

8.57 1.76 2.78 3.60 5.09±2.71

Table 2 

1Eggs were injected with 100 ng/ml PLCZ1 RNA. 2means±SD

Table 2. Profile of Ca2+ oscillations induced by PLCZ1 RNA

2

14

6

6.17

8

28

15

3.80

7

17

11

4.00



Table 3. Profile of Ca2+ oscillations induced by ICSI 

Egg No.

Latancy (min)

No. of Spikes/2hr

Interspike 
interval (min)

1 2 3 4 5 Average1

88 130 37 67 120 87.8±35.54

42 12 8 15

16.71

7 16.8±12.92

3.69 9.42 26.70 11.87 13.7±7.74

Table 3

1means±SD



Table 4. Effect of activation method on development of ROSI embryos

Egg 
activation
method

Ionomycin 33.8
(22/65)

31.4
(11/35)

26.2
(140/535)

No. of Eggs in parenthesis.

Day1

2PN(%) 1PN(%)

PLCZ1 RNA

Electrical
stimulation

26.2
(17/65)

34.3
(12/35)

28.0
(150/535)

Table 4 

No. of 
eggs

65

35

535

Day3(�7cell)

2PN(%) 1PN(%)

17.6
(3/17)

50.0
(6/12)

38.0
(57/150)

50.0
(11/22)

54.5
(6/11)

36.4
(51/140)



Highlights
►Pattern of Ca2+ oscillations induced by several egg-activating methods is examined in 
human oocytes.
►Optimal concentration of PLCZ1 RNA for embryo development is determined.
►The characteristics of Ca2+ oscillations after PLCZ1 RNA injection are similar to that 
after ICSI treatment.
►Developmental rate of embryo activated by PLCZ1 RNA is the highest, compared with 
ionomycin and electrical stimulation.


