1	Aldehyde dehydrogenase 1 expression in cancer cells could have prognostic value for patients with
2	non-small cell lung cancer who are treated with neoadjuvant therapy: identification of prognostic
3	microenvironmental factors after chemoradiation
4	
5	Yoshitaka Zenke ^{a,b,c} , Genichiro Ishii ^a , Yuichiro Ohe ^{b,c} , Kaoru Kaseda ^{a,b} , Tatsuya Yoshida ^{a,b} , Shingo Matsumoto ^b ,
6	Shigeki Umemura ^b , Kiyotaka Yoh ^b , Seiji Niho ^b , Koichi Goto ^b , Hironobu Ohmatsu ^b , Takeshi Kuwata ^b , Kanji
7	Nagai ^b , Atsushi Ochiai ^a
8	
9	^a Division of Pathology, Research Center for Innovative Oncology, National Cancer Center, Hospital East,
10	Kashiwa, Chiba, Japan
11	^b Division of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
12	^c Juntendo University Graduate School of Medicine, Tokyo, Japan
13	
14	Correspondence to: Genichiro Ishii, MD, PhD or Atsushi Ochiai, MD, PhD, Pathology Division, Research
15	Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan 277-0882
16	E-mail: gishii@east.ncc.go.jp (G. Ishii), or aochiai@east.ncc.go.jp (A. Ochiai)
17	The authors have no conflict of interest to disclose.
18	

20 Abstract

21Prognostic factors for patients with non-small cell lung cancer (NSCLC) who have been treated with 22neoadjuvant therapy have not been fully assessed. The purpose of this study was to analyze prognostic 23biomarkers in NSCLC after treatment with neoadjuvant therapy, with special reference to the 24immunophenotypes of both the cancer cells and stromal cells. A total of 52 patients with NSCLC who were 25treated with neoadjuvant therapy followed by complete resection were included. We examined the expressions of 269 markers in the cancer cells and stromal cells. The 5-year disease-free survival rate of patients with high 27ALDH1 expression levels in their cancer cells was significantly lower than those with a low ALDH1 level 28(47.3% vs. 21.5%, respectively; p=0.023). The other molecules expressed in cancer cells did not exhibit any 29prognostic value. In NSCLC without neoadjuvant therapy (case control, n=104), expression of ALDH1 in cancer cells was not correlated with prognosis (p=0.507). A multivariate analysis identified ALDH1 expression in 30 31cancer cells as significantly independent prognostic factors for disease-free survival (p=0.045). The current study 32indicated that the immunophenotypes of ALDH1 in cancer cells could have prognostic value for patients with 33 NSCLC who are treated with neoadjuvant therapy.

34

35 Key words: Non-small cell lung cancer, Neoadjuvant therapy, ALDH1, cancer-initiating cell, cancer stromal cell

- 37
- 38

1. Introduction

41	Lung cancer is the leading cause of death among patients with malignant tumors worldwide. Surgical resection
42	is the standard treatment modality for early stages non-small cell lung cancer (NSCLC), but many patients
43	develop local and distant recurrences and die.1 For locally advanced NSCLC, multimodal therapy including
44	chemotherapy, radiotherapy and surgery is often recommended to control and eliminate occult distant metastasis
45	and to reduce and downstage the primary tumor and mediastinal metastasis, respectively. Induction
46	chemotherapy followed by surgery has been demonstrated to improve survival in selected patients with
47	NSCLC. ²⁻⁵ However, more recent studies have failed to confirm this data, ^{6,7} and the issue remains controversial.
48	Although several randomized trials have reported that a pathological complete response (pCR) is a prognostic
49	factor for chemoradiotherapy (CRT) followed by surgical treatment, ^{8,9} biological predictive markers of NSCLC
50	after treatment with CRT have not been fully assessed. Identifying biological predictive markers may help to
51	distinguish patients who are likely to benefit from additional postoperative chemotherapy.
52	Carcinoma tissue is composed of cancer cells and stromal cells including cancer-associated fibroblasts (CAFs)
53	and tumor-associated macrophages (TAMs). ^{10, 11} The cancer cells associate with CAFs and TAMs and together
54	form the specific microenvironment of the cancer tissue. The biological and prognostic significance of the tumor
55	microenvironment has been increasingly recognized ¹² .
56	Cancer-initiating cells (CICs) and the epithelial mesenchymal transition (EMT) are reportedly correlated with
57	tumor progression and CRT resistance. ^{13, 14} Furthermore, the contribution of CAFs and TAMs to local

58	tumor-promoting effects and the resistance of cancer cells to chemotherapy have been recently reported.
59	However, the biological characteristics of the cellular constituents within the tumor microenvironment after CRT
60	are not fully understood.
61	The purpose of this study was to identify prognostic biological markers in patients treated with neoadjuvant
62	therapy followed by surgical treatment by examining the immunophenotypes of both cancer cells and stromal
63	cells, including CAFs and TAMs. We examined the expressions of 6 markers on cancer cells: geminin, cleaved
64	caspase 3, E-cadherin, vimentin (an EMT-related marker), ALDH1 and CD44v6 (a CIC-related marker). To
65	examine the prognostic value of CAFs, the expression levels of podoplanin and CD90 were examined, while the
66	expression of CD204 was examined in TAMs.
67	
68	2. Material and methods
69	
70	2.1 Subjects
71	
72	66 consecutively cases of patients with NSCLC who were treated with neoadjuvant chemotherapy,
73	chemoradiotherapy, or radiotherapy followed by complete resection at our hospital between April 1992 and
74	December 2009 were reviewed. The clinicopathological characteristics of the patients and the treatment results
75	are summarized in Supplemental Table 1. Among the 66 surgically resected specimens, case with viable tumor
76	cells remained in the specimens were included in this study (n=52) (Table 1). The median follow-up period was

77	56 months. Surgically resected 104 NSCLC patients without neoadjuvant therapy between April 1992 and
78	December 2009 were also reviewed by matching for clinical stage and histopathology (Supplemental Table 2).
79	The study was conducted with the approval of the Institutional Review Board of the National Cancer Center.
80	
81	2.2 Neoadjuvant therapy
82	
83	As neoadjuvant chemotherapy, 17 patients had received mitomycin, vindesine, and cisplatin, and 21 patients
84	had received platinum-based combination chemotherapy, such as cisplatin plus vindesine, cisplatin plus
85	vinorelbine, cisplatin plus docetaxel, cisplatin plus gemcitabine, or carboplatin plus paclitaxel. Only two patients
86	had received docetaxel alone. The chemotherapy regimens used with radiotherapy were mitomycin, vindesine,
87	and cisplatin or cisplatin plus vinorelbine. The median number of chemotherapy cycles was 2 (range: 1-4). The
88	median total dose of radiotherapy was 45 Gy (range: 30-50 Gy).
89	
90	2.3 Pathological studies
91	
92	The surgically resected specimens were fixed in 10% formalin or absolute methyl alcohol and embedded in
93	paraffin. The tumors were cut into 5 to 10-mm-thick slices, and serial 4- μ m sections were stained with
94	hematoxylin and eosin. All the slides containing the maximum surface area of the tumor in each case were
95	reviewed. The representative pathologic findings for the cancer tissues after neoadjuvant therapy are shown in

97	We also measured the area of the residual tumors (ART), which would reflect the residual tumor volume and
98	has been previously reported to have prognostic value in patients with neoadjuvant therapy, using a described
99	method previously. ¹⁵
100	
101	2.4 Antibodies and immunohistochemistry
102	
103	The markers of cell proliferation and apoptosis used in the present study were geminin (clone EM6; Novocastra,
104	Newcastle-upon-Tyne, UK) and cleaved caspase 3 (polyclonal; Cell Signaling Technology, Danvers, MA, USA).
105	The markers of epithelial to mesenchymal transition (EMT)-related molecules were E-cadherin (clone 36; BD
106	Biosciences, San Jose, CA, USA), and vimentin (clone Vim 3B4; Dako Cytomation, Glostrup, Denmark). To
107	evaluate the expression of cancer stem cell-related molecules, we used ALDH1 (clone 44/ALDH; BD
108	Bioscience) and CD44v6 (clone VFF-7; Acris, Herford, Germany). To evaluate tumor promoting
109	cancer-associated fibroblasts (CAFs), we used podoplanin (clone D2-40; Signet, Princeton, NJ, USA) and CD90
110	(Anti-THY1; Atlas, Stockholm, SWEDEN). To evaluate activated macrophages, we used CD204 (clone
111	SRA-E5; Trans Genic, Hyogo, Japan).
112	Sections (4-µm each) were cut from the paraffin blocks and mounted on silanized slides. After antigen retrieval,
113	the slides were immersed in a 0.3% hydrogen peroxide solution

114 in methanol for 15 min to inhibit endogenous peroxidase activity. Individual slides were then incubated

115	overnight at 4°C with different antibodies; after extensive washing with PBS, the smears were incubated with
116	EnVision (Dako, Glostrup, Denmark) for 1 hour at room temperature. The color reaction was developed for 3
117	min in 2% 3, 3'-diaminobenzidine in 50 mM Tris-buffer (pH 7.6) containing 0.3% hydrogen peroxide. Finally,
118	the sections were counterstained with Meyer's hematoxylin, dehydrated and mounted.
119	
120	2.5 Immunohistochemical scoring
121	
122	All the stained tissue sections were scored semiquantitatively and were evaluated independently under a light
123	microscope by two pathologists (Y.Z. and G.I.) who had no knowledge of the patients' clinicopathological data.
124	The labeling scores for the tumor cells were calculated by multiplying the percentage of positive tumor cells per
125	lesion (0%–100%) by the staining intensity level ($0 = negative$; $1 = weak$; $2 = strong$). We selected the median
126	score to define high and low staining.
127	For geminin and cleaved caspase 3, the number of positive tumor cells per 100 tumor cells was counted. For
128	CD 204-positive TAMs, the number of positive infiltrating cells was counted under a microscopic at \times 400 (area
129	= 0.0625 mm2), as previously reported. ¹⁶ We selected the median number of positive cells to define the high and
130	low group. For the CAFs, according to the definition used in a previous study, cases with positive-stained
131	spindle-shaped cells accounting for more than 10% of the cells in the cancer stroma were identified as the high
132	group. ¹⁷

2.6 Statistical analysis

136	Disease-free survival (DFS) was defined as the time from surgery to tumor recurrence, death or the date of the
137	last follow-up. The survival curves were estimated using the Kaplan-Meier method, and the differences in
138	survival between the subgroups were compared using the log-rank test. A multivariate analysis was conducted
139	using the Cox proportional-hazard model. P values of less than 0.05 were considered to be significant. The
140	statistical analysis software (JMP, Version 9) was used to perform the analyses.
141	
142	3. Results
143	
144	3.1. Patient characteristics
145	
146	Table 1 shows the clinicopathological characteristics of the patients who received neoadjuvant therapy. Forty
147	patients received chemotherapy, while 12 patients received chemoradiotherapy before surgery.
148	A univariate analysis of the clinicopathological factors was performed to identify factors influencing the
149	disease-free survival, and the log-rank test was used to compare the two groups. Among the clinical factors,
150	older age (≥ 65 years) was significantly correlated with a shorter DFS ($p=0.008$). Larger ART (ART>400 mm ²)
151	was also significantly correlated with a shorter DFS ($p=0.035$) (Table 2). There were not the correlations
152	between clinical response rate and disease-free survival ($p=0.54$).

3.2. Immunohistochemical staining of the cancer cells and prognostic impact

155	Univariate analyses were performed according to the Cox proportional hazard model to determine the prognostic
156	value of the expression of each molecule in cancer cells (Table 3a). The expression statuses of geminin, cleaved
157	caspase 3, E-cadherin, vimentin, and CD44v6 in the cancer cells had no prognostic impact.
158	On the other hand, ALDH1 expression displayed prognostic significance. Figure 2 shows the representative
159	results of ALDH1 expression in cancer cells. The 5-year disease-free survival rate of cases with a high ALDH1
160	expression level was 21.5%, while that of the cases with a low ALDH1 expression level was 47.3%. A high
161	ALDH1 expression level in the cancer cells was significantly correlated with a shorter DFS ($p=0.02$). The
162	Kaplan-Meier curve for DFS according to the ALDH1 expression status in the cancer cells is shown in Figure
163	3A.
164	
165	3.3. Immunohistochemical staining of cancer associated fibroblasts (CAFs) and tumor-associated
166	macrophages (TAMs) and their prognostic impact
167	
168	The 5-year DFS rates of patients with low podoplanin and CD90 levels in CAFs were 37.9% and 33.8%, while
169	those of patients with high podoplanin and CD90 levels in CAFs was 29.1% and 37.5%, respectively. The 5-year
170	DFS rate of the patients with low CD204 levels in TAMs was 38.4%, while that of the patients with high CD204
171	levels in TAMs was 29.0%.

172	None of the molecules examined in the CAFs and TAMs had any prognostic impact (<i>P</i> =0.90, <i>P</i> =0.75, <i>P</i> =0.98)
173	(Table 3b).
174	
175	3.4 Prognostic impact of ALDH1 expression in NSCLC without neoadjuvant therapy
176	
177	We examined the ALDH1 expression levels in 104 surgically resected NSCLC specimens from patients who
178	did not undergo neoadjuvant therapy (Supplemental Table 2). The 5-year DFS rate of the patients with a high
179	ALDH1 expression level was 48.3%, while that of the cases with a low ALDH1 expression level was 59.8%
180	(Figure 3B). However, the difference was not significant (<i>P</i> =0.507).
181	
182	3.5 Multivariate analyses to identify factors significantly associated with the prognosis
183	
184	A multivariate analysis using the Cox proportional hazard model was performed to determine the prognostic
185	usefulness of conventional pathological factors and the immunohistochemical staining of cancer cells, CAFs,
186	TAMs and ART (Table 4). A high ALDH1 expression level in cancer cells and an ART>400 mm ² were identified
187	as significantly independent prognostic factors for DFS ($p=0.045$, $p=0.011$, respectively).
188	
189	Discussion
100	

191	This is the first report that examined the prognostic significance of biological markers in NSCLC after
192	neoadjuvant therapy, focusing on the characteristics of both cancer cells and stromal cells including CAFs and
193	TAMs. In the current study, we clearly showed that a high ALDH1 expression level in cancer cells was an
194	independent predictor of the DFS. Although previous studies have reported the prognostic significance of CAFs
195	and TAMs in lung cancer patients who did not receive CRT. ^{16, 18} none of the molecules examined in the present
196	study had any prognostic impact.
197	Generally, CIC and EMT characteristics are known to have drug or radiation-resistant features. ^{13, 19} Shien et al.
198	reported that NSCLC patients who had undergone induction CRT and who exhibited positivity for CIC-related
199	molecules (CD133-positive or ALDH1-positive) had a significantly poorer prognosis. ²⁰ On the other hand,
200	Shintani et al. reported that the DFS rate of patients with EMT marker-positive tumor cells was significantly
201	lower than that of patients with EMT marker-negative tumor cells among NSCLC patients who had undergone
202	CRT. ¹⁴ Since it was assumed that these cells had already metastasized systemically before or during CRT, these
203	results and our current results suggest the possibility that the remaining CIC and/or EMT related marker positive
204	cancer cells might be responsible for the development of distant metastasis in patients with induction CRT.
205	Aldehyde dehydrogenase 1 (ALDH1) belongs to the aldehyde dehydrogenase superfamily which is responsible
206	for the oxidation of aldehydes to their corresponding carboxylic acids. ²¹ ALDH1 can serve as a cancer
207	stem/initiating cell marker in several types of cancers. ²²⁻²⁴ In NSCLC, the prognostic value of the ALDH1
208	expression level has been controversial. ²⁵⁻²⁷ We examined the prognostic value of ALDH1 in 104 cases of
209	NSCLC without neoadjuvant therapy (Figure 3B). However, the expression level of ALDH1 in the cancer cells

210was not correlated with the prognosis. These results suggested that the ALDH1 expression level might be a 211prognostic marker only in NSCLC patients who have undergone neoadjuvant therapy. One possible reason of 212this discrepancy might be explained by the hypothesis that within the original tumor microenvironment, 213ALDH1-negative cancer cells also have a cancer initiating capacity. Prasmickaite et al. reported that both 214ALDH-positive and ALDH-negative melanoma cells demonstrated similarly high abilities for clone formation in 215vitro and tumor initiation in vivo when isolated from melanoma xenografts.²⁸ Therefore, ALDH-positive and 216ALDH-negative cancer cells may have similarly metastatic capacity in NSCLC patients without neoadjuvant 217therapy. However, drug sensitivity may be different and ALDH1-negative cancer cells may disappear by 218treatment, and only ALDH1-positive cancer cell remained. The elucidation of the molecular mechanisms that are 219involved is needed for further in vitro or in vivo studies. 220Previous studies have reported that podoplanin positive CAFs and CD204-positive TAMs were correlated with a poor prognosis in patients with lung adenocarcinoma and squamous cell carcinoma.^{11, 16, 18, 29} However, in the 221222current study, CAFs and TAMs did not have any prognostic impact. These results suggested the possibility that 223tumor-promoting stromal cells do not function in the cancer microenvironment during CRT. 224We previously reported that the area residual tumor (ART) is a novel histopathological evaluation method for 225predicting the outcome of patients with NSCLC who are treated with neoadjuvant therapy.¹⁵ ART was defined as 226an estimator of the residual quantity of tumor. In this study, the results of a multivariate analysis showed that a 227high ALDH1 expression level in cancer cells and the ART were independent prognostic factors. According to 228subgroup analyses combining the ALDH1 expression level in cancer cells and the ART, the 5-year DFS of each

229	group was 62.3%, 40.0%, and 8.8%, respectively. ALDH1-positivity and an ART>400 mm ² (5-year DFS, 8.8%)
230	was associated with a significantly shorter DFS time than ALDH1-negativity and an ART ≤ 400 mm ² (5-year DFS,
231	62.3%) (p=0.005) (Supplemental Figure 1). Therefore, to examine the biomarkers in patients who have received
232	CRT, it is very important to perform both quantitative and qualitative analyses of the residual tumor cells.
233	In conclusion, the presence of ALDH1-positive cancer cells was an independent recurrence predictor in patients
234	who received neoadjuvant therapy, while CAFs and TAMs did not provide any predictors. Although prospective
235	studies with a larger number of patients are required to confirm the prognostic significance of ALDH1
236	expression in cancer cells in validation populations with neoadjuvant therapy, our results suggest that the
237	immunophenotypes of ALDH1 expression can serve as a guide to additional treatment after surgical resection in
238	patients who received neoadjuvant therapy.
239	
240	Acknowledgements
241	This work was supported by the Foundation for the Promotion of Cancer Research, 3rd-Term Comprehensive
242	10-Year Strategy for Cancer Control; the National Cancer Center Research and Development Fund (23-A-12);
243	and JSPS KAKENHI (24659185) and Advanced research for medical products Mining Programme of the
244	National Institute of Biomedical Innovation (NIBIO).
245	
246	Appendix. Supplementary data

247 Supplementary data associated with this article can be found, in the online version

248 **References**

249

1 Travis WD, Giroux DJ, Chansky K, et al. The IASLC Lung Cancer Staging Project: proposals for the inclusion of broncho-pulmonary carcinoid tumors in the forthcoming (seventh) edition of the TNM Classification for Lung Cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2008; **3**: 1213-23.

254 2 Rosell R, Gomez-Codina J, Camps C, et al. A randomized trial comparing preoperative
255 chemotherapy plus surgery with surgery alone in patients with non-small-cell lung cancer. The
256 New England journal of medicine. 1994; 330: 153-8.

Roth JA, Atkinson EN, Fossella F, et al. Long-term follow-up of patients enrolled in a
randomized trial comparing perioperative chemotherapy and surgery with surgery alone in
resectable stage IIIA non-small-cell lung cancer. Lung Cancer. 1998; 21: 1-6.

260 4 Shah AA, Berry MF, Tzao C, *et al.* Induction chemoradiation is not superior to induction
261 chemotherapy alone in stage IIIA lung cancer. *The Annals of thoracic surgery*. 2012; **93**: 1807-12.

5 Scagliotti GV, Pastorino U, Vansteenkiste JF, *et al.* Randomized phase III study of surgery alone or surgery plus preoperative cisplatin and gemcitabine in stages IB to IIIA non-small-cell lung cancer. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology.* 2012; **30**: 172-8.

Song WA, Zhou NK, Wang W, et al. Survival benefit of neoadjuvant chemotherapy in
non-small cell lung cancer: an updated meta-analysis of 13 randomized control trials. Journal of
thoracic oncology : official publication of the International Association for the Study of Lung
Cancer. 2010; 5: 510-6.

Suntharalingam M, Paulus R, Edelman MJ, et al. Radiation therapy oncology group
protocol 02-29: a phase II trial of neoadjuvant therapy with concurrent chemotherapy and
full-dose radiation therapy followed by surgical resection and consolidative therapy for locally
advanced non-small cell carcinoma of the lung. International journal of radiation oncology, biology,
physics. 2012; 84: 456-63.

Albain KS, Swann RS, Rusch VW, *et al.* Radiotherapy plus chemotherapy with or without
surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. *Lancet.* 2009; **374**: 379-86.

- Stupp R, Mayer M, Kann R, et al. Neoadjuvant chemotherapy and radiotherapy followed
 by surgery in selected patients with stage IIIB non-small-cell lung cancer: a multicentre phase II
 trial. *The lancet oncology*. 2009; 10: 785-93.
- 10 Ishii G, Sangai T, Sugiyama K, *et al.* In vivo characterization of bone marrow-derived
 fibroblasts recruited into fibrotic lesions. *Stem Cells.* 2005; 23: 699-706.
- 283 11 Ohtaki Y, Ishii G, Nagai K, et al. Stromal macrophage expressing CD204 is associated

- with tumor aggressiveness in lung adenocarcinoma. Journal of thoracic oncology : official
 publication of the International Association for the Study of Lung Cancer. 2010; 5: 1507-15.
- 12 Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor
 microenvironment. *Frontiers in bioscience : a journal and virtual library*. 2010; 15: 166-79.

13 Bertolini G, Roz L, Perego P, et al. Highly tumorigenic lung cancer CD133+ cells display
stem-like features and are spared by cisplatin treatment. *Proceedings of the National Academy of*Sciences of the United States of America. 2009; 106: 16281-6.

- 14 Shintani Y, Okimura A, Sato K, *et al.* Epithelial to mesenchymal transition is a
 determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. *The Annals of thoracic surgery.* 2011; **92**: 1794-804; discussion 804.
- Yamane Y, Ishii G, Goto K, *et al.* A novel histopathological evaluation method predicting
 the outcome of non-small cell lung cancer treated by neoadjuvant therapy: the prognostic
 importance of the area of residual tumor. *Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.* 2010; **5**: 49-55.
- Hirayama S, Ishii G, Nagai K, et al. Prognostic impact of CD204-positive macrophages in
 lung squamous cell carcinoma: possible contribution of Cd204-positive macrophages to the
 tumor-promoting microenvironment. Journal of thoracic oncology : official publication of the
 International Association for the Study of Lung Cancer. 2012; 7: 1790-7.
- Ito T, Ishii G, Nagai K, *et al.* Low podoplanin expression of tumor cells predicts poor
 prognosis in pathological stage IB squamous cell carcinoma of the lung, tissue microarray analysis
 of 136 patients using 24 antibodies. *Lung Cancer.* 2009; 63: 418-24.
- 305 18 Ono S, Ishii G, Nagai K, *et al.* Podoplanin-positive cancer associated fibroblast could have
 306 prognostic value independent of cancer cell phenotype in stage I lung squamous cell carcinoma:
 307 Utility of combining analysis of both cancer cell phenotype and cancer associated fibroblast
 308 phenotype. *Chest.* 2012.
- 309 19 Zhuo WL, Wang Y, Zhuo XL, Zhang YS, Chen ZT. Short interfering RNA directed against
 310 TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via
 311 MAPK/mitochondrial pathway. *Biochemical and biophysical research communications*. 2008; 369:
 312 1098-102.
- Shien K, Toyooka S, Ichimura K, *et al.* Prognostic impact of cancer stem cell-related
 markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. *Lung Cancer.* 2012; **77**: 162-7.
- 316 21 Sladek NE. Human aldehyde dehydrogenases: potential pathological, pharmacological,
 317 and toxicological impact. *Journal of biochemical and molecular toxicology*. 2003; **17**: 7-23.
- 318 22 Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and
 319 malignant human mammary stem cells and a predictor of poor clinical outcome. *Cell stem cell.*320 2007; 1: 555-67.
- 321 23 Huang EH, Hynes MJ, Zhang T*, et al.* Aldehyde dehydrogenase 1 is a marker for normal

and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon
 tumorigenesis. *Cancer research*. 2009; 69: 3382-9.

Wu A, Luo W, Zhang Q, et al. Aldehyde dehydrogenase 1, a functional marker for
identifying cancer stem cells in human nasopharyngeal carcinoma. *Cancer letters*. 2013; 330:
181-9.

25 Okudela K, Woo T, Mitsui H, Tajiri M, Masuda M, Ohashi K. Expression of the potential 28 cancer stem cell markers, CD133, CD44, ALDH1, and beta-catenin, in primary lung 29 adenocarcinoma--their prognostic significance. *Pathology international*. 2012; **62**: 792-801.

Jiang F, Qiu Q, Khanna A, et al. Aldehyde dehydrogenase 1 is a tumor stem
cell-associated marker in lung cancer. *Molecular cancer research : MCR*. 2009; 7: 330-8.

Dimou A, Neumeister V, Agarwal S, Anagnostou V, Syrigos K, Rimm DL. Measurement of
aldehyde dehydrogenase 1 expression defines a group with better prognosis in patients with
non-small cell lung cancer. *The American journal of pathology*. 2012; **181**: 1436-42.

Prasmickaite L, Engesaeter BO, Skrbo N, et al. Aldehyde dehydrogenase (ALDH) activity
does not select for cells with enhanced aggressive properties in malignant melanoma. *PloS one*.
2010; 5: e10731.

338 29 Kawase A, Ishii G, Nagai K, *et al.* Podoplanin expression by cancer associated fibroblasts
339 predicts poor prognosis of lung adenocarcinoma. *International journal of cancer Journal*340 *international du cancer.* 2008; **123**: 1053-9.

- 341
- 342
- 343
- 344
- 345
- 346
- 347

348

349

351 F	igure	legends
-------	-------	---------

Figure. 1. Histologic features of non-small cell lung cancer treated with neoadjuvant therapy followed by surgical resection. (A): Squamous cell carcinoma: the cancer cells did not show any obvious histologic changes after chemoradiotherapy. (B): Degenerated cancer cells showing a bizarre nucleus. (C): Form cell infiltration around necrotic foci. (D): Stromal hyalinosis.

358	Figure. 2. ALDH	1 staining in cance	er cells. (A): High	ALDH1 expression	n in adenocarcinoma.

(B): Negative ALDH1 expression in adenocarcinoma. (C): High ALDH1 expression in
 squamous cell carcinoma. (D): Negative ALDH1 expression in squamous cell carcinoma.

361

Figure. 3. Kaplan-Meier disease-free survival curve for patients with and those without neoadjuvant therapy according to the ALDH1 expression level in cancer cells. (A): Kaplan-Meier disease-free survival curve for patients with neoadjuvant therapy. High expression, dotted line; Low expression, solid line. (B): Kaplan-Meier disease-free survival curve for patients without neoadjuvant therapy (case control). High expression, dotted line; Low expression, solid line.

368

370	Supp	orting	Inform	nation
-----	------	--------	--------	--------

371	Supplemental Figure. 1. Kaplan-Meier disease-free survival according to ALDH1
372	expression and ART. Group (A): ALDH1 negative expression in cancer cells/ART \leq 400 mm ² ;
373	Group (B): ALDH1 positive expression in cancer cells/ART≦400 mm ² or ALDH1 negative
374	expression in cancer cells/ART>400 mm ² ; Group (C): ALDH1 positive expression in cancer
375	cells/ ART>400 mm ² .
376	
377	Supplemental Table 1. Clinicopathological characteristics of the patients received
378	neoadjuvant therapy (n=66)
379	
380	Supplemental Table 2. Clinicopathological characteristics of the patients without

381 neoadjuvant therapy (n=104) (case control)

Figure. 1.

Figure. 1. Histologic features of non-small cell lung cancer treated with neoadjuvant therapy followed by surgical resection. (A): Squamous cell carcinoma: the cancer cells did not show any obvious histologic changes after chemoradiotherapy. (B): Degenerated cancer cells showing a bizarre nucleus. (C): Form cell infiltration around necrotic foci. (D): Stromal hyalinosis.

Figure. 2.

Figure. 2. ALDH1 staining in cancer cells. (A): High ALDH1 expression in adenocarcinoma. (B): Negative ALDH1 expression in adenocarcinoma. (C): High ALDH1 expression in squamous cell carcinoma. (D): Negative ALDH1 expression in squamous cell carcinoma.

Figure. 3A.

Figure. 3B.

Characteristic	Number of patients	
Gender		
Male/Female	44/8	
Age (yr)		
Median(range)	64(32-76)	
Smoking history		
Non-smoker	34	
Smoker	18	
Histology		
Adenocarcinoma	26	
Squamous cell carcinoma	19	
Large cell carcinoma	2	
Others	5	
Clinical stage		
I/II/III/IV	5/24/20/3	
c-T:T1/T2/T3/T4	0/17/28/7	
c-N:N0/N1/N2/N3	32/6/11/3	
Pathological stage		
I/II/III/IV	9/23/20/0	
yp-T:T1/T2/T3/T4	5/17/29/1	
yp-N:N0/N1/N2/N3	29/11/12/0	
Neoadjuvant therapy		
Chemotherapy	40	
Chemotherapy+radiotherapy	12	
Clinical response		
Complete response	1	
Partial response	26	
Stable disease	22	
Progression disease	3	
Vascular invasion		
v(-)/v(+)	21/31	
Lymphatic invasion		
ly(-)/ly(+)	36/16	
Pleural invasion		
pl(-)/pl(+)	21/31	

Table 1. Clinicopathological characteristics of the patients received neoadjuvant therapy (n=52)

Table 2. Univariate ana	iysis of ennicopatholog	gical factor for disease-	
Prognostic Factor	Hazard Ratio	95%CI	P-value
Age			
$\leq 65 \text{ vs} > 65$	2.50	1.26-5.01	0.008‡
Gender			
male vs female	1.73	0.69-3.79	0.22
Smoking history			
Non-smoker vs	1.60	0.80-3.12	0.17
Smoker			
Therapy			
chemotherapy vs	1.08	0.49-2.70	0.85
chemo+radiotherapy			
Clinical response			
CR,PR vs SD,PD	1.23	0.41-1.60	0.54
T status	4.40		
p11-2 vs p13-4	1.18	0.60-2.40	0.62
Nodal Status	1 =0	0.05.0.10	0.44
pN0 vs pN1-2	1.79	0.87-3.43	0.11
Histology	1.00		0.41
adenocarcinoma vs	1.32	0.67-2.67	0.41
Others			
vascular invasion	1 71	0.95.2.65	0.12
V(-) VS $V(+)$	1./1	0.85-5.05	0.13
Lymphatic pemeation	1.05	0.52.2.25	0.97
Iy(-) VS Iy(+)	1.05	0.32-2.23	0.87
$p_{1}(x) = p_{1}(x)$	1 11	0.56.2.25	0.76
pi(-) vs pi(+)	1.11	0.30-2.23	0.70
AKI (IIIII ²) ≤ 400 vg > 400	2.14	1 05 4 72	0.02*
$\Rightarrow 400 \text{ vs} > 400$	2.14	1.03-4.72	0.034

Table 2. Univariate analysis of clinicopathological factor for disease-free survival

ART: Area of the residual tumor

Log-rank test was used in comparison between the two groups. ($\ddagger < 0.05$)

Table 3a. Univariate	analysis of immune	ohistochemi	cal staining of cancer ce	lls
Antibodies	High (No. of Patients)	Low	5-year Disease-free survival rate (%)	P-value
Proliferation and apopt	osis			
geminin	28	24	High: 30.3 Low: 39.7	0.51
cleaved caspase 3	26	26	High: 30.2 Low: 38.7	0.37
EMT related molecules	5			
E-cadherin	26	26	High: 38.0 Low: 30.5	0.98
vimentin	13	39	High: 27.6 Low: 36.8	0.79
Stem cells related mole	ecules			
ALDH1	26	26	High: 21.5 Low: 47.3	0.02‡
CD44v6	26	26	High:29.9 Low:38.4	0.71
Table 3b. Univariate analysis of immunohistochemical staining of stromal cells				
Antibodies	High (No. of Patients)	Low	5-year Disease-free survival rate (%)	P-value
Cancer-associated fibroblasts				
podoplanin	29	23	High: 29.1 Low: 37.9	0.90
CD90	8	44	High: 37.5 Low: 33.8	0.75
Tumor-associated mac	rophages			

High: 29.0 Low: 38.4

0.98

Log-rank test was used in comparison between the two groups. ($\ddagger < 0.05$)

26

CD204

j				
Variable	unfavorable	Hazard Ratio	95%CI	P-value
Geminin	High	0.81	0.35-1.79	0.60
Cleaved caspase 3	High	0.62	0.23-1.70	0.35
E-cadherin	Low	1.20	0.45-3.15	0.70
Vimentin	High	2.11	0.71-6.12	0.17
ALDH1	High	2.26	1.01-5.32	0.04‡
CD44v6	High	1.24	0.52-2.97	0.61
Podoplanin	High	0.90	0.26-3.00	0.86
CD90	Low	1.27	0.40-3.64	0.65
CD204	High	0.96	0.34-2.72	0.95
V	positive	2.15	0.76-6.19	0.14
ly	positive	1.81	0.69-4.74	0.22
pl	positive	1.55	0.46-5.40	0.47
ART	>400	4.68	1.41-17.3	0.01‡

Table 4. Multivariate analysis of pathological prognostic factors who received neoadjuvant therapy

ART: Area of the residual tumor (mm²)

Multivariate analysis was conducted using the Cox proportional-hazard model : (‡<0.05),95%Cl, 95% confidence interval

Characteristic	Number of patients
Gender	
Male/Female	49/17
Age (yr)	
Median(range)	61(32-76)
Histology	
Adenocarcinoma	35
Squamous cell carcinoma	19
Large cell carcinoma	4
Others	8
Clinical stage	
I/II/III/IV	8/31/24/3
c-T:T1/T2/T3/T4	2/20/36/8
c-N:N0/N1/N2/N3	41/8/14/3
Histopathological evaluation	
CR	11
non-CR	55
Neoadjuvant therapy	
Chemotherapy	49
Chemotherapy+radiotherapy	14
Radiotherapy	3

Supplemental Table 1. Clinicopathological Characteristics of the patients received neoadjuvant therapy (n=66)

Characteristic	Number of patients
Gender	
Male/Female	78/26
Age (yr)	
Median(range)	65(38-86)
Smoking history	
Non-smoker	29
Smoker	75
Histology	
Adenocarcinoma	56
Squamous cell carcinoma	38
Large cell carcinoma	4
Others	6
Clinical stage	
	21/48/35/0
c-T:T1/T2/T3/T4	18/35/47/4
c-N:N0/N1/N2/N3	61/37/6/0
Vascular invasion	
v(-)/v(+)	42/62
Lymphatic invasion	70 (20
ly(-)/ly(+)	12/32
Pleural invasion	
pl(-)/pl(+)	51/53

Supplemental Table 2. Clinicopathological characteristics of the patients without neoadjuvant therapy (n=104) (case control)

Supplemental Figure. 1.

Supplemental Figure. 1. Kaplan–Meier disease-free survival according to ALDH1 expression and ART. Group (A): ALDH1 negative expression in cancer cells/ART \leq 400 mm²; Group (B): ALDH1 positive expression in cancer cells/ART \leq 400 mm² or ALDH1 negative expression in cancer cells/ART>400 mm²; Group (C): ALDH1 positive expression in cancer cells/ART>400 mm²; Group (C): ALDH1 positive expression in cancer cells/ART>400 mm²; Group (C): ALDH1 positive expression in cancer cells/ART>400 mm²; Group (C): ALDH1 positive expression in cancer cells/ART>400 mm²; Group (C): ALDH1 positive expression in cancer cells/ART>400 mm²; Group (C): ALDH1 positive expression in cancer cells/ART>400 mm².