1	Normal pancreatic β -cell function in mice with <i>RIP-Cre</i> -mediated inactivation of
2	p62/SQSTM1
3	
4	Running title: Role of p62/SQSTM1 in β -cell function
5	
6	Akira Honda, ¹ Koji Komiya, ¹ Akemi Hara, ^{1,2} Ayako Fukunaka, ^{1,5} Luka Suzuki, ¹
7	Takeshi Miyatsuka, ^{1,2} Takeshi Ogihara, ¹ Yoshio Fujitani, ^{1,5} and Hirotaka Watada ^{1,2,3,4}
8	
9	¹ Department of Metabolism and Endocrinology, ² Center for Identification of Diabetic
10	Therapeutic Targets, ³ Center for Therapeutic Innovations in Diabetes, and ⁴ Sportology
11	Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan,
12	⁵ Laboratory of Developmental Biology and Metabolism, Institute for Molecular and
13	Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
14	
15	

Keywords: islets, β cell, diabetes, p62, Sequestosome 1

18	Correspondence to: Yoshio Fujitani, M.D., Ph.D., Laboratory of Developmental
19	Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma
20	University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan, E-mail:
21	fujitani@gunma-u.ac.jp; or Hirotaka Watada, M.D., Ph.D., Department of Metabolism
22	and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo,
23	Bunkyo-ku, Tokyo 113-8421, Japan, E-mail: hwatada@juntendo.ac.jp
24	

Abstract

27	Recent studies have suggested that decreased pancreatic β -cell function and mass are
28	common features of patients with type 2 diabetes mellitus. Pancreatic β -cell
29	homeostasis is regulated by various types of signaling molecules and stress responses.
30	Sequestosome 1/p62 (SQSTM1, hereafter referred to as p62) is a ubiquitin-binding
31	adaptor protein involved in cell signaling, oxidative stress, and autophagy. Because
32	p62 appears to play an important role in maintaining mitochondrial quality control, it is
33	possible that the loss of $p62$ in pancreatic β cells contributes to mitochondrial
34	dysfunction, and thus leading to impaired glucose tolerance. In this study we
35	investigated the physiological roles of p62 by inactivating $p62$ in a β -cell specific
36	manner. We found that firstly, rat insulin-2 promoter-Cre (RIP-Cre)-mediated p62
37	inactivation did not cause body weight gain, although ubiquitous inactivation of $p62$
38	was previously shown to result in severe obesity. Secondly, we found no gross
39	structural disorganization of the islets of $p62$ -deficient mice. Consistent with normal
40	islet morphology, no impairment in glucose tolerance was observed in mice with

- 41 RIP-Cre-mediated p62 deletion. These results suggest that p62 is dispensable for
- 42 normal islet organization and β -cell function.

Introduction

45	Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia
46	resulting from the complex interplay of multiple genetic and environmental factors,
47	resulting in both decreased insulin action on target tissues and defective pancreatic
48	β -cell insulin secretion in response to glucose [1]. The natural history of diabetes is
49	strongly associated with the disability of pancreatic β cells to adapt to meet the
50	increased demand for insulin secretion caused by increased insulin resistance [2].
51	Therefore, elucidating the molecular mechanisms underlying pancreatic β -cell
52	dysfunction is a key to understanding the pathology of diabetes [3,4].
53	Sequestosome 1 (SQSTM1, referred to hereafter as p62) is a multifunctional
54	scaffold protein that can interact with several signaling pathways through its functional
55	subdomains, including the Phox and Bem1 (PB1) domain, zinc-finger domain, TNF
56	receptor-associated factor 6 (TRAF6)-binding domain, and Kelch-like ECH-associated
57	protein 1 (Keap1) interacting region (KIR) [5-7]. p62/SQSTM1 can activate the
58	antioxidant response by interacting with the Keap1-Nrf2 pathway [8-10]. The
59	Keap1-Nrf2 antioxidant response pathway is one of the major cellular defense

60	mechanisms against oxidative insults [11,12]. p62/SQSTM1 also contains a ubiquitin
61	association domain and LC3-interacting region, and is thus selectively degraded by
62	autophagy together with ubiquitinated proteins that are recruited to autophagosomes
63	via p62 [13,14]. Based on the assumption that the degradation of p62 largely depends
64	on autophagy, the accumulation of cellular p62 has been widely used as a diagnostic
65	marker for autophagic failure [15]. In fact, p62 accumulates in tissues such as liver,
66	brain, and heart under autophagy-deficient conditions [16-18].
67	p62 has been reported to play a crucial role in the regulation of metabolism in
68	white adipose tissue and liver. Mice with global inactivation of $p62 (p62^{-/-})$ were found
69	to develop mature-onset obesity and several features of metabolic syndrome, including
70	excess fat accumulation in white adipose tissue and liver, impaired glucose tolerance,
71	and insulin sensitivity [19]. A subsequent study on brain-specific p62 knockout mice
72	demonstrated that a lack of $p62$ in the brain causes leptin resistance, thereby leading to
73	hyperphagia and obesity [20]. The p62 protein is also involved in several
74	ageing-related pathologies. $p62^{-/-}$ mice have a reduced lifespan and show premature
75	aging phenotypes with increased mitochondrial damage and dysfunction [21]. Given

76	the importance of p62 in maintaining mitochondrial homeostasis through the
77	autophagic degradation of damaged mitochondria, or so called mitophagy, it is
78	possible that loss of $p62$ in pancreatic β cells contributes to mitochondrial dysfunction
79	and thereby reduces insulin release, resulting in impaired glucose tolerance [5]. On the
80	other hand, a recent study reported that in contrast to what has been reported for
81	ubiquitin-induced pexophagy and xenophagy, p62 appears to be dispensable for
82	mitophagy [22]. The same study also reported that mitochondrial-anchored ubiquitin is
83	sufficient to recruit p62 to mitochondria and promote mitochondrial clustering, but
84	does not promote mitophagy, further demonstrating the controversy regarding the role
85	of p62 in the mitochondrial homeostasis of β cells. Therefore, in this study, as the first
86	step towards elucidating the role of p62 itself in β cells, we investigated the effects of
87	β-cell-specific <i>p</i> 62 ablation on β-cell function.

Materials and Methods

- 89
- 90

91 Animal experiments

92	All mice were housed in specific pathogen-free barrier facilities, maintained under a
93	12-hour light/12-hour dark cycle, and provided standard rodent food (Oriental Yeast,
94	Tokyo, Japan) and water ad libitum. Rat insulin 2 promoter-driven Cre recombinase
95	[23] was used to delete $p62$ in a pancreatic β -cell-specific manner. The generation of
96	p62 ^{flox/+ (f/+)} mice was performed as described previously [20]. RIP-Cre mice were
97	crossed with $p62^{f/+}$ mice to generate $p62^{f/+}$:RIP-Cre mice. Next, $p62^{f/+}$ mice were
98	crossed with $p62^{f/+}$: <i>RIP-Cre</i> mice to generate $p62^{f/f}$: <i>RIP-Cre</i> mice.
99	

100 Measurement of blood glucose and insulin levels

101 To measure non-fasting glucose levels, glucose levels were measured in the morning.

- 102 For the intraperitoneal glucose tolerance test (IPGTT), after an overnight fast (16 h),
- 103 age-matched 22-week-old male mice were injected intraperitoneally with glucose (0.5
- 104 g/kg body weight). A few microliters of blood were taken from the tail vein of awake

105	mice, and glucose levels were measured using whole blood with a compact glucose
106	analyzer (ACCU-CHEK® Compact Plus, Roche Diagnostics, Basel, Switzerland) at
107	the indicated time points. To measure insulin levels, whole blood samples were
108	collected from the orbital sinus in awake mice and centrifuged. After centrifugation,
109	plasma was stored at -80 °C until analysis. Insulin levels were measured using an
110	enzyme-linked immunosorbent assay kit (Morinaga Co., Kanagawa, Japan).

112 Isolation of mouse islets

After anesthetization of mice and euthanasia by cutting of their carotid arteries, the 113 114 distal ends of the common bile duct were clamped adjacent to the duodena. 115 Subsequently, common bile ducts were cannulated with a 30-G needle near the liver. 116 Acinar tissue was disrupted by injecting 1.5 mL of a 0.15% collagenase solution. Then, 117 pancreata were removed, and incubated in 1 mL of 0.15% collagenase solution for 40 118 min at 37 °C. For isolating islets from the digested acinar tissue, pancreata were 119 shaken for 1 min in conical tubes with 40 mL Hank's balanced salt solution (HBSS). Next, solutions were incubated for 90 sec until the islets sunk to the bottom of the tube. 120

121	Then, supernatants were aspirated and 50 mL of HBSS was added. This cycle of
122	incubating, aspirating, and adding was continued until the solution became clear. The
123	islets were transferred to dishes and collected using a micropipette under a dissecting
124	microscope.
125	
126	RT-PCR analysis

Total RNA was extracted from isolated islets using RNeasy Plus Mini Kit (Qiagen,

128 Valencia, CA, USA), and cDNA was synthesized using Ovation RNA Amplification

129 System V2 (Nugen, San Carlos, CA, USA) according to the manufacturer's protocols.

130 Real-time PCR was performed using TaqMan Custom Arrays (Applied Biosystems,

131 Foster City, CA, USA). The expression levels of Sqstm1/p62 (Mm00448091_m1)

132 mRNAs were quantified by TaqMan Real-Time PCR Assays (Applied Biosystems,

133 Foster City, CA, USA), and normalized to glucuronidase beta (Gusb,

134 Mm01197698_m1). Data are expressed as the mean \pm SE.

135

127

136 Immunohistochemistry and morphometric analysis

137	After anesthetization, 22-week-old mice were thoroughly perfused with saline
138	followed by 4% paraformaldehyde. Pancreata were removed and fixed with 4%
139	paraformaldehyde for at least 2 days at 4 °C until embedding. Fixed tissues were
140	embedded in paraffin and then cut into 4-µm-thick sections and mounted onto slides.
141	The sections were blocked with 2% bovine serum albumin for 30 min at room
142	temperature, and then incubated with each primary antibody overnight at 4 °C. The
143	primary antibody for guinea pig anti-human insulin (Dako, Glostrup, Denmark) was
144	diluted to 1:1,000 in 2% bovine serum albumin. The streptavidin-biotin complex
145	method was used for detection, and hence the sections were incubated with
146	biotinylated goat anti-guinea pig IgG (1:1,000) secondary antibody for 60 min at room
147	temperature. β -cell areas were determined using five insulin-stained sections from each
148	mouse, and each section was separated by at least 200 μm to avoid double scoring of
149	the same islet. Images of pancreatic tissue were captured using a microscope
150	(BZ-9000; Keyence, Osaka, Japan). Areas of insulin-stained pancreatic islets were
151	determined automatically using image analysis software (WinROOF; Mitani Corp.,
152	Fukui, Japan).

154	Statistical	analyses
-----	-------------	----------

- 155 All quantitative data are reported as the mean \pm SEM. Statistical analyses were
- 156 performed using the unpaired two-tailed Student *t*-test or nonrepeated ANOVA. A
- 157 *p*-value of less than 0.05 was considered to indicate a significant difference between

158 groups.

159

160 Ethical approval

161 The animal experiment protocol was approved by the Ethics Review Committee of

162	Animal	Experimen	tation of	Juntendo	University.
					2

163

Results

166	To analyze the physiological roles of $p62$ in pancreatic β cells, $p62^{f/f}$:RIP-Cre mice
167	were generated by crossing $p62^{f/f}$ mice with $p62^{f/+}$:RIP-Cre mice. Quantitative
168	RT-PCR analysis indicated that $p62$ mRNA levels of $p62^{ff}$:RIP-Cre (referred to
169	hereafter as $p62^{f/f}$: Cre) islets were reduced by more than 70% of that of $p62^{+/+}$: Cre
170	islets (Fig. 1). Given that β cells constitute 70% of normal islet cells [24] and the
171	recombination efficiency of RIP-Cre is reported to be 80%-90% [25], p62 expression
172	was efficiently eliminated from β cells in $p62^{f/f}$: Cre islets. No gross abnormalities were
173	observed in $p62^{f/f}$: Cre mice. In contrast to the body weight gain observed in ubiquitous
174	p62-knockout mice [19] and brain-specific p62-knockout mice [20], p62 ^{f/f} :Cre mice
175	were indistinguishable in body weight from age-matched control $p62^{+/+}$:Cre
176	littermates between the ages of 6 and 22 weeks (Fig. 2A). There was no difference in
177	non-fasting blood glucose levels between the two groups (Fig. 2B). The glucose
178	tolerance test (GTT) indicated no deterioration of glucose tolerance in $p62^{ff}$:Cre mice
179	(Fig. 3A). During the GTT, a normal insulin secretion profile was observed, which was
180	comparable to that of $p62^{+/+}$: Cre mice (Fig. 3B). Moreover, histological analysis

181	demonstrated that there were no apparent morphological abnormalities or degenerative
182	changes in the islets of $p62$ -deficient mice (Fig. 4A). There was no significant change
183	in islet cell mass, assessed by insulin immunostaining, in p62 ^{ff} :Cre mice compared
184	with $p62^{+/+}$: <i>Cre</i> mice (Fig. 4B, C). The normal β -cell mass observed in β -cell-specific
185	p62-deficient mice is consistent with the normal β -cell proliferation in response to
186	inceased insulin resistance observed in global p62-deficient mice. Taken together, we
187	conclude that there are no differences between β -cell-specific <i>p62</i> -deficient mice and
188	control mice in terms of body weight, non-fasting blood glucose levels, glucose
189	tolerance, islet cell mass, and β -cell morphology. These results indicate that
190	p62/SQSTM1 in pancreatic β cells is dispensable for normal islet architecture, normal
191	glucose tolerance, and β -cell function.

Discussion

195	Ubiquitous inactivation of $p62 (p62^{-/-})$ has been reported to result in early onset
196	glucose intolerance and maturity-onset obesity [19]. Our results further confirmed that
197	impaired glucose tolerance in $p62^{-1/2}$ mice is primarily due to peripheral insulin
198	resistance, excluding the possible involvement of $p62$ function in pancreatic β cells.
199	$p62^{-/-}$ mice develop insulin resistance before their obesity becomes apparent [19]. $p62^{-/-}$
200	mice have increased fat content due to the hyperactivation of ERK, which causes
201	adipogenesis and obesity. At the molecular level, it has been demonstrated that p62
202	controls adipogenesis by inhibiting ERK activation via a direct interaction [19]. In
203	contrast to such a cell-autonomous role of p62 in adipocyte differentiation, our study
204	highlights the dispensable role of p62 in normal β -cell function and homeostasis, at
205	least when mice are fed a normal diet.
206	As p62 appears to play an important role in maintaining mitochondrial quality

As p62 appears to play an important role in maintaining mitochondrial quality
control through mitophagy, it is possible that the loss of *p62* in pancreatic β cells may
cause mitochondrial dysfunction and thus result in impaired glucose tolerance [5].
Normal β-cell function and mass in β-cell-specific *p62*-deficient mice suggested

210	redundant autophagy receptors; for instance, NBR1, which shares similar functional
211	domains with p62, may have a compensatory role in mitophagy when p62 is deficient
212	[26]. However, a recent study reported that NBR1 is dispensable for PARK2-mediated
213	mitophagy regardless of the presence or absence of p62 [27]. Thus, other mitophagy
214	receptors, such as BCL2L13 and FKBP8, may be involved in the autophagic
215	degradation of damaged mitochondria [28, 29]. Further studies will hence be needed to
216	determine the molecules that may compensate for p62 in $p62^{f/f}$: <i>RIP-Cre</i> mice.
217	Harada et al. reported that brain-specific <i>p62</i> disruption by <i>nestin-Cre</i> results in
218	significant body weight gain compared with control mice at 20 weeks of age [20].
219	Importantly, pair feeding completely abolished the obese phenotype of brain-specific
220	p62 KO mice, indicating that p62 in the brain inhibits appetite and thus controls body
221	weight homeostasis [20]. It has been demonstrated that RIP-Cre is expressed in a
222	subset of neurons in the hypothalamus, and that deletion of Stat3 results in progressive
223	obesity [30]. We found that $p62^{f/f}$: RIP-Cre mice show no noticeable obesity,
224	suggesting that p62 function in a brain area other than the <i>Rip-Cre</i> -expressing area is
225	important for appetite regulation.

226	We previously reported that autophagy deficiency in β cells is associated with
227	β -cell dysfunction [31]. Mice with β -cell specific autophagy deficiency
228	$(Atg7^{f/f}:RIP-Cre)$ showed impaired glucose tolerance with abnormal β -cell
229	morphology. In that study, a large amount of p62 accumulation was observed. It has
230	been reported that the liver injury occurring in liver-specific autophagy-deficient mice
231	is largely suppressed by the concomitant loss of $p62$, indicating that liver injury is
232	caused by a p62-dependent mechanism [14]. In contrast, the molecular mechanisms as
233	to how β cells are damaged under autophagy deficiency is largely unknown. Here we
234	show that the loss of p62 in pancreatic β cells does not affect their morphology or
235	function. Therefore, future studies should focus on investigating whether the
236	accumulation of p62/SQSTM1 contributes to β -cell failure under autophagy-deficient
237	conditions, by generating β -cell specific <i>Atg7/p62</i> double KO mice.

239	Conflicts of Interest
240	
241	All authors report no conflicts of interest.
242	

2	4	4
_		

Acknowledgments

245	We thank Dr. T. Ishii for kindly providing the $p62^{f/f}$ mice and Ms. N. Daimaru, Ms. E.
246	Magoshi, Ms. H. Hibino, and Ms. S. Ishikawa for their excellent technical assistance.
247	We also acknowledge the support of the Mouse Facility and the Cell Imaging Core,
248	Laboratory of Molecular and Biochemical Research, and Research Support Center at
249	Juntendo University. This work was supported by grants from the Ministry of
250	Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid for
251	Scientific Research: 26111518, 26293220, and 16H01205 to HW), and from Japan
252	Agency for Medical Research and Development (AMED) to YF.

References

- 254
- 255

256	1.	American Diabetes Association (2009) Diagnosis and classification of diabetes
257		mellitus. Diabetes Care 32 Suppl 1: S62-67.
258	2.	Kahn SE (2003) The relative contributions of insulin resistance and beta-cell
259		dysfunction to the pathophysiology of Type 2 diabetes. <i>Diabetologia</i> 46: 3-19.
260	3.	Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, et al. (2014)
261		β -cell failure in type 2 diabetes: postulated mechanisms and prospects for
262		prevention and treatment. J Clin Endocrinol Metab 99: 1983-1992.
263	4.	Prentki M, Nolan CJ (2006) Islet β cell failure in type 2 diabetes. J Clin Invest
264		116: 1802-1812.
265	5.	Bitto A, Lerner CA, Nacarelli T, Crowe E, Torres C, et al. (2014)
266		P62/SQSTM1 at the interface of aging, autophagy, and disease. Age (Dordr)
267		36: 9626.
268	6.	Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a
269		signaling hub and an autophagy adaptor. FEBS J 282: 4672-4678.
270	7.	Nezis IP, Stenmark H (2012) p62 at the interface of autophagy, oxidative stress
271		signaling, and cancer. Antioxid Redox Signal 17: 786-793.
272	8.	Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, et al. (2010)
273		The selective autophagy substrate p62 activates the stress responsive
274		transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:
275		213-223.
276	9.	Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, et al. (2010) A noncanonical
277		mechanism of Nrf2 activation by autophagy deficiency: direct interaction
278		between Keap1 and p62. Mol Cell Biol 30: 3275-3285.
279	10.	Copple IM, Lister A, Obeng AD, Kitteringham NR, Jenkins RE, et al. (2010)
280		Physical and functional interaction of sequestosome 1 with Keap1 regulates the
281		Keap1-Nrf2 cell defense pathway. J Biol Chem 285: 16782-16788.

- Taguchi K, Motohashi H, Yamamoto, M. (2011) Molecular mechanisms of the
 Keap1-Nrf2 pathway in stress response and cancer evolution. *Genes Cells* 16:
 123-140.
- 285 12. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The
 286 Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer.
 287 *Redox Biol* 1:45-49.
- Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, *et al.* (2005)
 p62/SQSTM1 forms protein aggregates degraded by autophagy and has a
 protective effect on huntingtin-induced cell death. *J Cell Biol* 171: 603-614.
- 14. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, *et al.* (2007) Homeostatic
 levels of p62 control cytoplasmic inclusion body formation in
 autophagy-deficient mice. *Cell* 131: 1149-1163.
- Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, *et al.* (2016)
 Guidelines for the use and interpretation of assays for monitoring autophagy
 (3rd edition). *Autophagy* 12:1-222.
- Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, *et al.* (2005) Impairment of
 starvation-induced and constitutive autophagy in Atg7-deficient mice. *J Cell Biol* 169: 425-434.
- Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, *et al.* (2006)
 Suppression of basal autophagy in neural cells causes neurodegenerative
 disease in mice. *Nature* 441: 885-889.
- Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, *et al.* (2007) The role
 of autophagy in cardiomyocytes in the basal state and in response to
 hemodynamic stress. *Nat Med* 13: 619-624.
- Rodriguez A, Duran A, Selloum M, Champy MF, Diez-Guerra FJ, *et al.* (2006)
 Mature-onset obesity and insulin resistance in mice deficient in the signaling
 adapter p62. *Cell Metab* 3: 211-222.
- 309 20. Harada H, Warabi E, Matsuki T, Yanagawa T, Okada K. *et al.* (2013)
 310 Deficiency of p62/Sequestosome 1 causes hyperphagia due to leptin resistance
 311 in the brain. *J Neurosci* 33: 14767-14777.

- 312 21. Kwon J, Han E, Bui CB, Shin W, Lee J, *et al.* (2012) Assurance of
 313 mitochondrial integrity and mammalian longevity by the
 314 p62-Keap1-Nrf2-Nqo1 cascade. *EMBO Rep* 13: 150-156.
- 315 22. Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle, RJ (2010)
 316 p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not
 317 mitophagy; VDAC1 is dispensable for both. *Autophagy* 6: 1090-1106.
- 318 23. Gannon M, Shiota C, Postic C, Wright CV, Magnuson M (2000) Analysis of
 319 the Cre-mediated recombination driven by rat insulin promoter in embryonic
 320 and adult mouse pancreas. *Genesis* 26: 139-142.
- 321 24. Rhodes CJ (2005) Type 2 diabetes-a matter of β-cell life and death? *Science*322 307:380-384.
- 323 25. Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, *et al.* (2003) Of
 324 mice and MEN1: Insulinomas in a conditional mouse knockout. *Mol Cell Biol*325 23: 6075-6085.
- 326 26. Johansen T, Lamark T. (2011) Selective autophagy mediated by autophagic
 327 adapter proteins. *Autophagy* 7: 279-296.
- Shi J, Fung G, Deng H, Zhang J, Fiesel FC, *et al.* (2015) NBR1 is dispensable
 for PARK2-mediated mitophagy regardless of the presence or absence of
 SQSTM1. *Cell Death Dis* 6:e1943.
- 331 28. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, *et al.* (2015)
 332 Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates
 333 mitophagy and mitochondrial fragmentation. *Nat Commun* 6:7527.
- Bhujabal Z, Birgisdottir ÅB, Sjøttem E, Brenne HB, Øvervatn A, *et al.* (2017)
 FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. *EMBO Rep*18:947-961.
- 337 30. Cui Y, Huang L, Elefteriou F, Yang G, Shelton JM, *et al.* (2004) Essential role
 338 of STAT3 in body weight and glucose homeostasis. *Mol Cell Biol* 24: 258-269.
- 339 31. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, *et al.* (2008) Autophagy
 340 is important in islet homeostasis and compensatory increase of beta cell mass in
 341 response to high-fat diet. *Cell Metab* 8: 325-332.

Figure legends

345	Fig. 1 Expression of <i>p62</i> in beta-cell specific <i>p62</i> -knockout mice
346	Quantitative real-time PCR analysis of p62 in $p62^{+/+}$:RIP-Cre ($p62^{+/+}$:Cre) and
347	p62 ^{f/f} :RIP-Cre (p62 ^{f/f} :Cre) islets. mRNAs were prepared from islets of mice with the
348	indicated genotypes at 24 weeks of age. Values were normalized to the amount of
349	mRNA in $p62^{+/+}$: Cre islets. Expression levels of p62 mRNAs were decreased by more
350	than 70% in islets of $p62^{\text{ff}}$: Cre mice (n = 3 each, *p < 0.001). Data are the mean ±
351	SEM.
352	
353	
354	Fig. 2 Ablation of p62 in β cells does not lead to body weight gain nor to
355	differences in non-fasting blood glucose levels
356	Changes in body weight (A) and non-fasting blood glucose levels (B) of $p62^{+/+}$:Cre
357	(blue circles; $n = 10$), $p62^{f/+}$: Cre (green circles; $n = 10$), and $p62^{f/f}$: Cre (red circles; $n = 10$)

358 10) mice between 6 and 22 weeks of age. Data represent the mean \pm SEM.

360	Fig. 3 Ablation of p62 in β cells does not exacerbate glucose tolerance
361	Blood glucose concentrations (A) and serum insulin levels (B) measured during
362	IPGTT at the age of 22 weeks. Blue circles, $p62^{+/+}$: <i>Cre</i> mice (n = 10); green circles,
363	$p62^{f/+}$: Cre mice (n = 10); and red circles, $p62^{f/f}$: Cre mice (n = 10). Data represent the
364	mean \pm SEM.
365	
366	Fig. 4 Ablation of p62 in islets does not result in morphological abnormalities of islets
367	(A) Representative images of hematoxylin and eosin staining of islets of 22-week-old
368	$p62^{+/+}$: Cre, $p62^{f/+}$: Cre, and $p62^{f/f}$: Cre mice. Scale bars represent 100 μ m.
369	(B) Representative images of insulin staining of the islets of 22-week-old $p62^{+/+}$:Cre,
370	$p62^{f/+}$: Cre, and $p62^{f/f}$: Cre mice. Scale bars represent 100 µm.
371	(C) Percent islet area of $p62^{+/+}$: Cre (n = 4), $p62^{f/+}$: Cre (n = 5), and $p62^{f/f}$: Cre mice
372	$(n = 6)$. Data represent the mean \pm SEM.

Quantitative real-time PCR analysis of *p62* in *p62*^{+/+:}*RIP-Cre* (*p62*^{+/+:}*Cre*) and *p62*^{f/f}:*RIP-Cre* (*p62*^{f/f}:*Cre*) islets. mRNAs were prepared from islets of mice with the indicated genotypes at 24 weeks of age. Values were normalized to the amount of mRNA in *p62*^{+/+:}*Cre* islets. Expression levels of *p62* mRNAs were decreased by more than 70% in islets of *p62*^{f/f}:*Cre* mice (n = 3 each, **p* < 0.001). Data are the mean ± SEM.

Fig. 2 Ablation of *p*62 in β cells does not lead to body weight gain nor to differences in non-fasting blood glucose levels

Changes in body weight (A) and non-fasting blood glucose levels (B) of $p62^{+/+}$:Cre (blue circles; n = 10), $p62^{f/+}$:Cre (green circles; n = 10), and $p62^{f/+}$:Cre (red circles; n = 10) mice between 6 and 22 weeks of age. Data represent the mean ± SEM.

Fig. 4 Ablation of *p*62 in islets does not result in morphological abnormalities of islets

(A) Representative images of hematoxylin and eosin staining of islets of 22-week-old $p62^{+/+}$:Cre, $p62^{f/+}$:Cre, and $p62^{f/f}$:Cre mice. Scale bars represent 100 µm. (B) Representative images of insulin staining of the islets of 22-week-old $p62^{+/+}$:Cre, $p62^{f/+}$:Cre, and $p62^{f/f}$:Cre mice. Scale bars represent 100 µm. (C) Percent islet area of $p62^{+/+}$:Cre (n = 4),

 $p62^{f/+}$:Cre (n = 5), and $p62^{f/+}$:Cre mice (n = 6). Data represent the mean ± SEM.