The factors associated with pain severity in patients with knee osteoarthritis vary according to the radiographic disease severity: A cross-sectional study

Yukio Shimura¹, Hisashi Kurosawa¹, Yu Sugawara¹, Masaru Tsuchiya¹, Mamiko Sawa¹, Haruka Kaneko², Ippei Futami², Liz Liu²,³, Ryo Sadatsuki², Shinnosuke Hada², Yoshiyuki Iwase¹, Kazuo Kaneko²,³ and Muneaki Ishijima²,³ #

¹ Department of Orthopedics, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
² Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
³ Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

E-mail addresses: YS; simsim@rd5.so-net.ne.jp; HK; kuro@juntendo.ac.jp, YS; sugasoul@jcom.home.ne.jp, MT; potatointheball_1007@yahoo.co.jp, MS; sawa.mamiko@nifty.ne.jp, HK; harukago@juntendo.ac.jp, IF; ippei@juntendo.ac.jp, LL; liuliz@juntendo.ac.jp, RS; rsadatsu@juntendo.ac.jp, SH, no.8hadashin@gmail.com, YI; iwase@juntendo.gmc.ac.jp, KK; k-kaneko@juntendo.ac.jp, MI; ishijima@juntendo.ac.jp

Corresponding author

Muneaki Ishijima, M.D., Ph.D.
Associate Professor,
Department of Medicine for Orthopaedics and Motor Organ
Juntendo University Graduate School of Medicine
2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
Tel; +81-3-3813-3111, Fax; +81-3-3813-3428
E-mail; ishijima@juntendo.ac.jp
Abstract

Objectives:

Knee osteoarthritis (OA) pain is suggested to be associated with inflammation and detrimental mechanical loading across the joint. In this cross-sectional study, we simultaneously examined the inflammation and alignment of the lower limb and examined how the pain components varied depending on the disease progression.

Design:

160 female medial type of early- (n=74 in Kellgren-Lawrence [K/L] 2) to advanced-stage (n=96 in K/L >2) knee OA subjects (70.5 years on average) were enrolled. Knee pain was evaluated using a pain visual analog scale (VAS) and the pain-related subcategory of the Japanese Knee Osteoarthritis Measure (JKOM-pain). The serum interleukin (sIL)-6 level reflecting synovitis, and the high sensitivity C-reactive protein (hs-CRP) level were measured to evaluate the severity of inflammation. The Anatomical Axis Angle (AAA) was measured as an alignment index. The β-coefficient was estimated after adjusting for age and the BMI using a multiple linear regression analysis.

Results:

Multiple linear regression analyses showed that the sIL-6 levels, but not AAA, associated with the pain VAS (β=10.77 [95% confidence interval (CI); 4.14 to 17.40], p<0.01) and JKOM-pain scores (β=3.19 [95%CI: 1.93 to 4.44], p<0.001) in the early stage. Conversely, AAA, but not the
sIL-6 levels, were found to be associated with the pain VAS (β=-1.29 [95%CI: -2.51 to -0.08], $p<0.05$) and JKOM-pain scores (β=-0.49 [95%CI: -0.82 to -0.16], $p<0.01$) in the advanced stage.

Conclusions:

The presence of a higher level of sIL-6 and the varus alignment of the joint are associated with pain in early- and advance-stage knee OA patients, respectively.

Key words

Knee osteoarthritis; pain; interleukin-6; synovitis; JKOM (Japanese Knee Osteoarthritis Measure); alignment
Introduction

Pain is the most prominent and disabling symptom of osteoarthritis (OA). Symptom-modifying therapy is the only available treatment for knee OA; therefore, it is important to understand the factors causing the pain in order to optimally treat this common disease. The pain in knee OA is a type of nociceptive pain. It has been speculated that detrimental mechanical loading across the joint and inflammation, especially synovitis, may be the main factors associated with the severity of pain. Detrimental mechanical loading across the knee joint is speculated to be one of the main factors in the pathophysiology of knee OA. The alignment of the lower limb has been reported to associate with pain in knee OA. The malalignment of the lower limb and excess body mass have both been considered to be risk factors for the progression of knee OA, due to the association between these factors and the joint load.

Inflammation is also well known to be associated with the pathophysiology of knee OA. Synovitis in OA may be a secondary phenomenon related to the cartilage and bone alterations induced by the release of degenerative compounds from the extracellular matrix of articular cartilage into the synovial fluid. This could further stimulate cartilage damage. Recently, the role of synovitis in OA has attracted particular attention, as synovitis has been...
revealed to be one of the potential indicators for knee pain and predictive factors for both structural and symptomatic progression of the disease10-14.

Interleukin (IL)-6 is a pro-inflammatory cytokine that is produced in the synovium under conditions of synovitis. The serum levels of IL-6 in patients with RA were demonstrated to be related to both the symptoms and progression of the disease, and the inhibition of IL-6 improved the clinical outcomes in patients with RA15. IL-6 was also produced by the synovial membrane in patients with knee OA16, and the serum levels of IL-6 were associated with the change in knee pain over five years17 and with the future prevalence of radiological knee OA18. The serum levels of highly sensitive C-reactive protein (hs-CRP) were correlated with inflammatory cell infiltration in the synovial membrane and the levels of IL-6 in the synovial fluid19. The hs-CRP level was also reported to be a predictor of knee pain17. The serum levels of both IL-6 and hs-CRP were considered to be predictors of a decreased articular cartilage volume in patients with knee OA19. Therefore, IL-6, which is associated with synovitis, may also be involved in the pathogenesis of pain associated with knee OA.

While the detrimental mechanical loading across the joint and the synovitis are both speculated to be involved in the pain severity in knee OA, it still remained unclear how the pain components varied based on the progression of the disease. We hypothesized that the factors associated with pain in knee OA varied according to the disease progression. To verify this
hypothesis, we divided the patients into two groups according to the radiographic severity of knee OA and investigated the pain severity, the serum IL-6 and hs-CRP levels and the alignment of the lower limb in patients with knee OA, and examined whether the factors associated with pain in knee OA varied according to the radiographic disease severity.
Methods

Subjects and methods

This study was approved by the ethics committee of our university. Patients who first visited the outpatient clinic of Juntendo Tokyo Koto Geriatric Medical Center to seek therapy for knee pain due to OA were asked to participate in the study. All patients who agreed to participate provided their written informed consent before enrollment in this study. All subjects were postmenopausal females with medial knee OA who underwent the initial medical examination at our outpatient clinic between October 2009 and December 2011. The sample size of this study was determined based on the number of patients who demonstrated all these conditions during the study period. The diagnosis of knee OA was established according to the American College of Rheumatology criteria20. The inclusion criteria for the present study were (1) subjects who were able to walk with or without walking aids and fulfilled the criteria for knee OA of the medial femoro-tibial joint, (2) subjects who were at least 50 years old, but less than 80 years old, and (3) all subjects had radiographic knee OA with Kellgren-Lawrence (K/L) grade 2 or more as evaluated by the weight-bearing antero-posterior X-rays of the tibio-femoral joint using the bilateral standing extended view 21,22. The exclusion criteria included (1) patients who had received drugs for knee OA (oral [e.g. non-steroidal anti-inflammatory drugs (NSAIDs) and opioid] or intra-articular injection [e.g. hyaluronic acid and corticosteroids])
prescribed by physicians in the previous three months, (2) those who had RA or arthritis due to infection or injury, (3) patients who had undergone joint replacement surgery, (4) patients who had secondary knee OA, (5) patients with patello-femoral OA with a K/L grade of 3 or higher and (6) patients with severe OA (K/L grade 3 or higher) in their hip joint.

Radiographic evaluation of the stage of progression and alignment of the lower extremity

The staging of knee OA on radiograph was assessed using the K/L grade (scale 1-4)\(^21\). All radiographs were taken by experienced technicians and were quantified by two readers who were blinded to the clinical information of the patient (HK and YS). Both intra- and inter-observer reproducibility rates were good [interclass correlation coefficient (ICC): 0.97 (95% confidence interval (CI): 0.70-0.97) and 0.95 (95% CI: 0.93-0.98), respectively]. For the statistical analysis, the patients were divided into two groups according to the radiographic severity of knee OA, in line with the methodology of previous reports\(^17,23\): including an early-stage group (K/L grade of 2) and an advanced-stage group (K/L grade of 3 and 4) group.

The alignment angle was measured by the method reported previously\(^24-26\). The femoral anatomic axis was found by drawing a line from the center of the tibial spines to a point 10 cm above the tibial spines, midway between the medial and lateral femoral surfaces. For the tibial anatomic axis, a line was drawn from the center of the tibial spines to a point 10 cm below the
tibial spines, midway between the medial and lateral tibial surfaces. The internal angles between
the femoral and tibial axes were measured using a computer and the angle was designated as the
alignment angle (anatomical alignment angle, AAA). In this method, AAA under 180 indicates
varus knee alignment.

Knee OA pain

Pain was evaluated by a visual analogue scale (VAS, 0-100) and the Japanese Knee
Osteoarthritis Measure (JKOM) score\(^27\). The JKOM is a patient-based, self-answered evaluation
score that includes four subcategories: pain and stiffness (JKOM-pain; total of eight questions,
0–32 points), activities of daily living (ADL) score (total of ten questions, 0–40 points),
participation in social activities score (total of five questions, 0–20 points), and general health
conditions (total of two questions, 0–8 points) with 100 points as the maximum score. The
JKOM score is higher in patients with more pain and physical disability, and this evaluation
modality is considered to have sufficient reliability and validity for studies of the clinical
outcomes of Japanese subjects with knee OA. The measure has also been shown to have
reliability and validity by means of statistical evaluations and comparison with other
health-related scales, the Western Ontario and McMaster Universities Arthritis Index
(WOMAC) and the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) in our
previous study. We assessed the pain severity using both the pain VAS score and JKOM-pain scores in this study.

Serum IL-6 and hs-CRP levels

Serum samples were obtained from all patients on the day that pain and function were assessed, and radiographs were taken. The non-fasting morning blood samples were collected from 9 to 11 in the morning at the outpatient clinic. The serum samples were stored at -80°C until they were analyzed. A chemiluminescent enzyme immunoassay was used for the measurement of the serum IL-6 concentration (minimum 0.2 pg/mL; reagent: human IL-6; cartridge and instrumentation: LumiPluse Forte; Fujirebio, Tokyo, Japan: intra-assay and interassay variations less than 5.2% and 6.5%, respectively). The serum CRP concentration was measured by latex agglutination nephelometry (reagent: CardioPhase hs-CRP; instrumentation: BN Pro Spec; Siemens Healthcare Diagnostics Inc., NY, USA: intra-assay and interassay variations less than 2% and 3.5%, respectively).

Statistical analysis

Descriptive statistics of age, BMI, IL-6, hs-CRP and AAA were calculated [mean, standard deviation (SD)]. The independent t-test was used to compare mean variables between early and
advanced group. To examine the associations between biomarkers, alignment and knee pain
scores, β-coefficient was estimated after adjusting for age and the BMI using a multiple linear
regression analysis. A p-value < 0.05 was considered to be statistically. All statistical analyses
were performed using the SPSS15.0J software program (SPSS, Chicago, IL, USA).
Results

Baseline characteristics of the patients

A flow chart of the present study is shown in Figure 1. While 202 patients who underwent the initial medical examination at our outpatient clinic between October 2009 and December 2011 were initially enrolled, 22 patients (10.9%) were excluded since they did not meet the study criteria, the remaining one-hundred eighty patients were included in the data analysis. Among these 180 patients, as 20 patients (11.1%) were excluded due to invalid clinical evaluation scores or incomplete hematological data, so the remaining 160 patients (88.9%) were included in the analysis.

The patient characteristics are shown in Table 1. The radiographic OA severities of the patients were 67 (41.9%) with a K/L grade of 2, 51 (31.9%) with a K/L grade of 3, and 42 (26.2%) with a K/L grade of 4. While no significant differences in the age of the patients were observed between the early- (K/L grade 2) and advanced-stage (K/L grades 3 and 4) knee OA group, the BMI of the patients with an advanced-stage knee OA was significantly higher in comparison to that of those with an early-stage knee OA. No significant differences in the pain VAS score, the JKOM-pain score, serum IL-6 and hs-CRP levels were observed between the patients with early-stage and advanced-stage knee OA. On the other hand, the AAA of the patients with an advanced-stage knee OA was significantly smaller in comparison to that of the
patients with an early-stage knee OA.

Factors associated with the pain severity in patients with knee OA

A multiple linear regression analysis indicated that the serum IL-6 levels and the AAA both associated with the pain severity, as evaluated by the pain VAS score in the patients when whole patients were included in the analysis (Table 2). On the other hand, the serum levels of IL-6 were solely associated with the pain VAS score in the patients with early-stage knee OA, while the AAA was solely associated with the pain VAS score in the patients with advanced-stage knee OA.

Similarly, when the JKOM-pain score was used to evaluate the pain severity, the serum IL-6 levels and the AAA were both associated with the pain severity in the whole patients (Table 3). In addition, the serum levels of IL-6 and the AAA solely associated with the JKOM-pain score in the patients with early- and advanced-stage knee OA respectively, thus confirming that there were differences in the pain-associated factors according to the stage of the disease.
Discussion

The present study has revealed, for the first time, that the factors associated with the pain severity in patients with knee OA varied with the radiographic disease severity. IL-6, which is related to synovitis, was mainly associated with the pain severity in early-stage knee OA, while the AAA was mainly associated with that in the advanced-stage knee OA.

Synovitis is seen from the early stage of knee OA. The changes in cartilage matrix turnover detected by several potential molecular biomarkers were supposed to account directly or indirectly for synovitis and knee pain in patients with an early-stage knee OA. More severe chronic synovitis was also seen in the advanced stage of knee OA than that in the early stage. The severity of chronic synovitis was correlated with the pain severity and the level of disability in late-stage knee OA patients. However, an increased degree of mononuclear cell infiltration and an overproduction of proinflammatory cytokines were more frequently observed in the early-stage of knee OA than in the late-stage knee OA. These studies suggest that the proinflammatory cytokines may be mainly involved in the synovitis in the early-stage of knee OA, while synovitis is associated with the pain severity in early- to advanced-stage in knee OA, as observed in this study (Tables 2 and 3). The associations between serum levels of IL-6 and the pain severity in the patients with early-stage knee OA, but not in those with advanced-stage knee OA, observed in the present study (Tables 2 and 3), may
be related to the results of these previous studies.

Although the serum hs-CRP, as well as IL-6, levels became high according to the progression of OA, in patients with early stage, the levels of IL-6, but not those of hs-CRP, significantly associated with the pain severity. The reason for the difference in this association is not clear. Circulating IL-6 is known to stimulate CRP production by the liver. CRP is a component of circulating serum β-globulin which is produced in the liver reacts to systemic and local tissue damage. IL-6 is a cytokine which is produced at a local site where cellular or tissue damage occurs. In addition, IL-6 is also produced by adipose tissue, which accompanies obesity34. As BMI of the patients with advanced-stage knee OA was significantly increased in comparison to that of those with early-stage knee OA in the present study (Table 1), serum IL-6 levels may be affected by the IL-6 produced by adipose tissues, in addition to a local site in the knee joint. Therefore, further study using synovial fluid, which is one of the sources to observe the local joint event, is necessary to clarify this question.

The mechanical loading across the knee joint, which was estimated by the knee adduction moment (KAM), was speculated to be higher due to the deteriorating lower limb alignment, and also because of increasing body weight7. However, it had not been elucidated to what extent the mechanical loading across the knee joint contributes to the knee joint pain in patients with knee OA. There was a weak correlation between the pain severity and either the
radiographic joint space narrowing or the alignment of the lower limb in patients with early- to advanced-stage knee OA. Consistent with this study, the lower limb alignment was weakly associated with the pain severity in the all patients, with early and advanced-stage knee OA in the present study. Moreover, the association between the alignment and the pain severity became clear in the patients with advanced-stage knee OA, who show a mild to severe varus alignment of the lower limb, while the association was not significant in the patients with early-stage knee OA, who generally show a normal to less severe varus alignment of the lower limb (Tables 1, 2 and 3). In the patients with advanced-stage knee OA, an association was identified between pain severity and the KAM, while no association was observed in the patients with early-stage knee OA. Among the early-stage with knee OA (K/L grade 2), the KAM significantly increased in patients with knee pain compared to those without pain. Simultaneously, the alignment of lower limb in the patients with knee pain also significantly increased (more varus lower limb alignment) in comparison to that in those without knee pain. Although, it is still remains unclear precisely how joint loading induces pain in patients with knee OA and such joint loading was not measured in the present study, the results of the present study suggest that the pain in the advanced-stage of knee OA is associated with the mechanical loading across the knee joint, which is associated with a deterioration of the lower limb alignment.
The current study was associated with some limitations. First, the present study is cross-sectional. The study deals with changes of the disease pathology according to the progression. Progression is time-related and ideally, the study should be designed longitudinally. In this context, the results obtained in this study may be understood as an indirect evidence. Secondly, the patients were divided into two subgroups for statistical analysis. The number of patients with advanced-stage OA was more by about fifty percent than that with early-stage OA. This may have produced the possibility of generating statistical bias comparing the two subgroups. Thirdly, the serum IL-6 levels have been reported to show a circadian rhythm37, the serum sample collection was not timed but collected in the morning and the patients had not fasted. While it was not examined whether the serum IL-6 levels show diurnal and activity-related variations, some biomarkers have been reported to have such variations38-40. Further studies are required to clarify whether there are time of day- and activity-related variations in the expression of IL-6 and hs-CRP38. Because we did not conduct detailed phenotyping of other joints, the contribution of other joints to the systemic levels of biomarkers cannot be addressed.

In conclusion, the presence of a higher level of sIL-6 is thus considered to be associated with pain in early-stage knee OA, while the varus alignment of the joint was found to be associated with pain in advance-stage knee OA patients.
Acknowledgement

The authors wish to thank Dr. Takayuki Kawasaki and Dr. Yuji Takazawa for their valuable help in conducting this study.

This study was funded in part by a High Technology Research Center Grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to M.I. and K.K.)
Contributions

YS, HK and MI conceived and designed the study. YS, HK, MT, YS, MS, YI collected and registered patients data. YS, MI, LL, HK, IF, RS, AY, SH had the major role in analysis and interpretation of the data, and contributed to drafting the report. KK and HK also supervised the statistical analysis. All authors have read and approved the final manuscript.
Role of the funding source

This study was funded in part by a High Technology Research Center Grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to M.I. and K.K.).
Competing interests

All authors declare that they have no competing interests.
References

7. Moyer RF, Birmingham TB, Chesworth BM, Kean CO, Giffin JR. Alignment, body
mass and their interaction on dynamic knee joint load in patients with knee osteoarthritis.

Osteoarthritis Cartilage 2010;18:888-93.

criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the
knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association.

joint space width measurement: an experimental study of the influence of radiographic

Pearle AD, Scanzello CR, George S, Mandl LA, DiCarlo EF, Peterson M, et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory

Moreland JR, Bassett LW, Hanker GJ. Radiographic analysis of the axial alignment of

Colebatch AN, Hart DJ, Zhai G, Williams FM, Spector TD, Arden NK. Effective

Hinman RS, May RL, Crossley KM. Is there an alternative to the full-leg radiograph

39. Criscione LG, Elliott AL, Stabler T, Jordan JM, Pieper CF, Kraus VB. Variation of

Tables

Table 1.
Baseline characteristic of the study subjects

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Early</th>
<th>Advanced</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>160</td>
<td>67</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>70.5</td>
<td>70.2</td>
<td>70.6</td>
<td>0.751</td>
</tr>
<tr>
<td></td>
<td>(7.6)</td>
<td>(6.7)</td>
<td>(8.2)</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.2</td>
<td>23.2</td>
<td>24.9</td>
<td>0.001*</td>
</tr>
<tr>
<td></td>
<td>(3.5)</td>
<td>(3.1)</td>
<td>(3.5)</td>
<td></td>
</tr>
<tr>
<td>Pain VAS score (Min; 0 to Max; 100)</td>
<td>52.9</td>
<td>51.0</td>
<td>54.3</td>
<td>0.425</td>
</tr>
<tr>
<td></td>
<td>(24.7)</td>
<td>(26.8)</td>
<td>(23.1)</td>
<td></td>
</tr>
<tr>
<td>JKOM-pain score (Min; 0 to Max; 32)</td>
<td>14.8</td>
<td>14.1</td>
<td>15.4</td>
<td>0.171</td>
</tr>
<tr>
<td></td>
<td>(6.1)</td>
<td>(5.8)</td>
<td>(6.4)</td>
<td></td>
</tr>
<tr>
<td>Serum IL-6 (pg/mL)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>0.494</td>
</tr>
<tr>
<td></td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(0.9)</td>
<td></td>
</tr>
<tr>
<td>Serum hs-CRP (ng/mL)</td>
<td>686.1</td>
<td>629.7</td>
<td>726.8</td>
<td>0.350</td>
</tr>
<tr>
<td></td>
<td>(665.8)</td>
<td>(594.9)</td>
<td>(712.0)</td>
<td></td>
</tr>
<tr>
<td>AAA (degree)</td>
<td>180.5</td>
<td>182.9</td>
<td>178.8</td>
<td><0.001*</td>
</tr>
<tr>
<td></td>
<td>(4.1)</td>
<td>(2.3)</td>
<td>(4.3)</td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as the means and SD. *A p values <0.05 were considered to be statistically significant. Early, early-stage knee OA [Kellgren-Lawrence (K/L) grade 2]; Advanced, advanced-stage knee OA (K/L grade 3 or 4).

Abbreviations: BMI, body mass index; VAS, visual analog scale; JKOM, Japanese Knee Osteoarthritis Measure; IL-6, Interleukin 6; hs-CRP, high sensitive C-reactive protein; AAA, anatomical axis angle.
Table 2. Factors associating with the pain VAS score in patients with knee OA

<table>
<thead>
<tr>
<th>Pain VAS score</th>
<th>β (95% CI)</th>
<th>p</th>
<th>β (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Crude)</td>
<td></td>
<td>(Adjusted)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>IL-6</td>
<td>5.87</td>
<td><0.01</td>
<td>5.92</td>
</tr>
<tr>
<td></td>
<td>(1.57 to 10.18)</td>
<td></td>
<td>(1.48 to 10.35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hs-CRP</td>
<td>-0.002</td>
<td>0.55</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(-0.008 to 0.004)</td>
<td></td>
<td>(-0.008 to 0.005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAA</td>
<td>-1.03</td>
<td>0.03</td>
<td>-1.04</td>
</tr>
<tr>
<td></td>
<td>(-1.95 to -0.115)</td>
<td></td>
<td>(-2.03 to -0.06)</td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td>IL-6</td>
<td>10.65</td>
<td><0.01</td>
<td>10.77</td>
</tr>
<tr>
<td></td>
<td>(4.16 to 17.15)</td>
<td></td>
<td>(4.14 to 17.40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hs-CRP</td>
<td>0.000</td>
<td>0.95</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(-0.011 to 0.012)</td>
<td></td>
<td>(-0.011 to 0.015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAA</td>
<td>-0.004</td>
<td>0.99</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(-2.683 to 2.68)</td>
<td></td>
<td>(-2.74 to 2.69)</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>IL-6</td>
<td>0.895</td>
<td>0.76</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>(-4.87 to 6.66)</td>
<td></td>
<td>(-5.44 to 6.72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hs-CRP</td>
<td>-0.001</td>
<td>0.73</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(-0.009 to 0.006)</td>
<td></td>
<td>(-0.009 to 0.006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAA</td>
<td>-1.36</td>
<td>0.02</td>
<td>-1.29</td>
</tr>
<tr>
<td></td>
<td>(-2.45 to -0.27)</td>
<td></td>
<td>(-2.51 to -0.08)</td>
<td></td>
</tr>
</tbody>
</table>

A multiple linear regression analysis Adjusted; adjusted for age and BMI. *A p values <0.05 were considered to be statistically significant. Early, early-stage knee OA [Kellgren-Lawrence (K/L) grade 2]; Advanced, advanced-stage knee OA (K/L grade 3 or 4). Abbreviations: BMI, body mass index; JKOM, Japanese Knee Osteoarthritis Measure; IL-6, Interleukin 6; hs-CRP, high sensitive C-reactive protein; AAA, anatomical axis angle; 95%CI, 95% confidence interval
Table 3. Factors associating with the JKOM-pain score in patients with knee OA

<table>
<thead>
<tr>
<th>JKOM-pain score</th>
<th>β (95% CI)</th>
<th>p</th>
<th>β (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Crude)</td>
<td></td>
<td>(Adjusted)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>1.75</td>
<td><0.01</td>
<td>1.73</td>
<td><0.01*</td>
</tr>
<tr>
<td>(0.72 to 2.78)</td>
<td></td>
<td></td>
<td>(0.67 to 2.79)</td>
<td></td>
</tr>
<tr>
<td>hs-CRP</td>
<td>0.000</td>
<td>0.68</td>
<td>0.000</td>
<td>0.70</td>
</tr>
<tr>
<td>(-0.002 to 0.001)</td>
<td></td>
<td></td>
<td>(-0.002 to 0.001)</td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>-0.40</td>
<td><0.01</td>
<td>-0.40</td>
<td><0.01*</td>
</tr>
<tr>
<td>(-0.62 to -0.18)</td>
<td></td>
<td></td>
<td>(-0.63 to -0.16)</td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>3.26</td>
<td><0.01</td>
<td>3.19</td>
<td><0.001*</td>
</tr>
<tr>
<td>(2.00 to 4.51)</td>
<td></td>
<td></td>
<td>(1.93 to 4.44)</td>
<td></td>
</tr>
<tr>
<td>hs-CRP</td>
<td>-0.001</td>
<td>0.65</td>
<td>-0.001</td>
<td>0.24</td>
</tr>
<tr>
<td>(-0.003 to 0.002)</td>
<td></td>
<td></td>
<td>(-0.004 to 0.001)</td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>-0.28</td>
<td>0.28</td>
<td>-0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>(-0.80 to 0.23)</td>
<td></td>
<td></td>
<td>(-0.79 to 0.25)</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>0.25</td>
<td>0.76</td>
<td>0.34</td>
<td>0.69</td>
</tr>
<tr>
<td>(-1.31 to 1.80)</td>
<td></td>
<td></td>
<td>(-1.30 to 1.97)</td>
<td></td>
</tr>
<tr>
<td>hs-CRP</td>
<td>0.000</td>
<td>0.82</td>
<td>0.000</td>
<td>0.76</td>
</tr>
<tr>
<td>(-0.002 to 0.002)</td>
<td></td>
<td></td>
<td>(-0.002 to 0.002)</td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>-0.47</td>
<td><0.01</td>
<td>-0.49</td>
<td><0.01*</td>
</tr>
<tr>
<td>(-0.762 to -0.17)</td>
<td></td>
<td></td>
<td>(-0.82 to -0.16)</td>
<td></td>
</tr>
</tbody>
</table>

A multiple linear regression analysis. Adjusted; adjusted for age and BMI. *A p values <0.05 were considered to be statistically significant. Early, early-stage knee OA [Kellgren-Lawrence (K/L) grade 2]; Advanced, advanced-stage knee OA (K/L grade 3 or 4). Abbreviations: BMI, body mass index; JKOM, Japanese Knee Osteoarthritis Measure; IL-6, Interleukin 6; hs-CRP, high sensitive C-reactive protein; AAA, anatomical axis angle; 95% CI, 95% confidence interval.
Figure legend

Figure 1. A flow chart of the present study
Total enrollment: 202 postmenopausal females with medial knee OA patients (October 2009 to December 2011)

- Excluded: 22 (10.9%) due to out of the criteria

Total analysis: 180 patients

- Excluded: 20 (11.1%) due to invalid data

Data available for analysis: 160 patients

- Early stage (K/L 2)
 - 67 (41.9%)
- Advanced stage (K/L 3 & 4)
 - 93 (58.1%)